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Abstract

Yishay Mansourt

Vie sho,v the convergence of tV/O deterministic variants of Q
learning. The first is the widely used optimistic Q-learning, which
initializes the Q-values to large initial values and then follows a
greedy policy with respect to the Q-values. We show that setting
the initial value sufficiently large guarantees the converges to an E
optimal policy. The second is a new and novel algorithm incremen
tal Q-learning, which gradually promotes the values of actions that
are not taken. We show that incremental Q-learning converges, in
the limit, to the optimal policy. Our incremental Q-learning algo
rithm can be viewed as derandomization of the E-greedy Q-learning.

1 Introduction

One of the challenges of Reinforcement Learning is learning in an unknown envi
ronment. The environment is modeled by an MDP and we can only observe the
trajectory of states, actions and rewards generated by the agent wandering in the
MDP. There are two basic conceptual approaches to the learning problem. The first
is model base, where we first reconstruct a model of the MDP, and then find an
optimal policy for the approximate model. Recently polynomial time algorithms
have been developed for this approach, initially in [7] and latter extended in [3].
The second are direct methods that update their estimated policy after each step.
The most popular of the direct methods is Q-learning [13].

Q-learning uses the information observed to approximate the optimal value function,
from which one can construct an optimal policy. There are various proofs that Q
learning converges, in the limit, to the optimal value function, under very mild
conditions [1, 11, 12, 8,6, 2]. In a recent result the convergence rates of Q-learning
are computed and an interesting dependence on the learning rates is exhibited [4].

Q-learning is an off-policy that can be run on top of any strategy. ·Although, it is
an off policy algorithm, in many cases its estimated value function is used to guide
the selection of actions. Being always greedy with respect to the value function may
result in poor performance, due to the lack of exploration, and often randomization
is used guarantee proper exploration.

We show the convergence of two deterministic strategies. The first is optimistic
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Q-learning, that initializes the estimates to large values and then follows a greedy
policy. Optimistic Q-Iearning is widely used in applications and has been recognized
as having good convergence in practice [10].

We prove that optimistic Q-Iearning, with the right setting of initial values, converge
to a near optimal policy. This is not the first theoretical result showing that opti
mism helps in reinforcement learning, however previous results where concern with
model based methods [7,3]. We show the convergence of the widely used optimistic
Q-Iearning, thus explaining and supporting the results observed in practice.

Our second result is a new and novel deterministic algorithm incremental Q
learning, which gradually promotes the values of actions that are not taken. We
show that the frequency of sub-optimal actions vanishes, in the limit, and that
the strategy defined by incremental Q-Iearning converges, in the limit, to the op
timal policy (rather than a near optimal policy). Another view of incremental
Q-Iearning is as a derandomization of the E-greedy Q-Iearning. The E-greedy Q
learning performs the sub optimal action every liE times in expectation, while the
incremental Q-learning performs sub optimal action every (Q(s, a(s)) - Q(s, b))jE
times. Furthermore, by taking the appropriate values it can be similar to the Boltz
man machine.

2 The Model

We define a Markov Decision process (MDP) as follows

Definition 2.1 A Markov Decision process (MDP) M is a 4-tuple (8, A, P, R),
where S is a set of the states, A is a set of actions, P/:J (a) is the transition proba-
bility from state i to state j when performing action a E A in state i, and RM(S, a)
is the reward received when performing action a in state s.

A strategy for an MDP assigns, at each time t, for each state S a probability for
performing action a E A, given a history F t - 1 == {sl,al,rl, ... ,St-l,at-l,rt-l}
which includes the states, actions and rewards observed until time t - 1. While
executing a strategy 1f we perform at time t action at in state St and observe a
reward rt (distributed according to RM(S, a)), and the next state St+l distributed
according to P:!,St+l (at). We combine the sequence of rewards to a single value
called return, and our goal is to maximize the return. In this work we focus on
discounted return, which has a parameter, E (0,1), and the discounted return of
policy 1f is VM== L:o ,trt , where Tt is the reward observed at time t.

We assume that RM(S, a) is non-negative and bounded by Rmax , i.e, "Is, a: 0:::;
RM(S, a) :::; Rmax . This implies that the discounted return is bounded by Vmax ==
RrnalZ'
1-, .

We define a value function for ~ach state s, under policy 1f, as VM(s) == E[L:o Ti,i] ,
where the expectation is over a run of policy 1f starting at state s, and a state-action
value function Q:M(s, a) == E[RM(S, a)] +,LSI P:!sl (a)ViI(s/).

Let 1f* be an optimal policy which maximizes the return from any start state.
This implies that for any policy 1f and any state S we have VM* (s) ~ ViI (s), and
1f*(s) == argmaxa(E[RM(S, a)] + ,(LsI P:!sl (a)V*(sl)).

We use ViI and QM- for VM* and Q', respectively. We say that a policy 1f is an
E-optimal if IIVM- Vull oo :::; €.



Given a trajectory let Ts,a be the.set of times in which we perform action a in state
s, TS == UaTs,a be the times when state s is visited, Ts,not(a) == TS \ Ts,a be the set
of times where in state s an action a' =1= a is performed, and Tnot(s) == UsJ=I=sTs

J
be

the set of times in which a state s' =1= s is visited. Also, [#(8, a, t)] is the number of
times action a is performed in state 8 up to time t, Le., ITs,a n [1, t]l.

Finally, throughout the paper we assume that the MDP is a uni-chain (see [9]),
namely that from every state we can reach any other state.

3 Q-Learning

The Q-Learning algorithm [13] estimates the state-action value function (for dis
counted return) as follows:

Qt+1 ( s, a) == (1 - at (s, a) )Qt (s, a) + at (8, a) (rt (8, a) + ,Vi(s') )

where Sl is the state reached from state s when performing action a at time t, and
Vi(s) == maxa Qt(s, a). We assume that at(sl, a') == 0 for t fj. TsJ,a

J
.

A learning rate at is well-behaved if for every state action pair (s, a): (1)
2::1 at(8, a) == 00 and (2) 2::1o'.;(s, a) < 00. If the learning rate is well-behaved
and every state action pair is performed infinitely often then Q-Learning converges
to Q* with probability 1 (see [1, 11, 12, 8, 6]).

The convergence of Q-Iearning holds using any exploration policy, and only requires
that each state action pair is executed infinitely often. The greedy policy with
respect to the Q-values tries to exploit continuously, however, since it does not
explore properly, it might result in poor return. At the other extreme random
policy continuously explores, but its actual return may be very poor. An interesting
compromise between the two extremes is the E-greedy policy, which is widely used
in practice [10]. This policy executes the greedy policy with probability 1 - E

and the random policy with probability E. This balance between exploration and
exploitation both guarantees convergence and often good performance.

Common to many of the exploration techniques, is the use of randomization, which
is also a very natural choice. In this work we explore strategies which perform
exploration but avoids randomization and uses deterministic strategies.

4 Optimistic Q-Learning

Optimistic Q-learning is a simple greedy algorithm with respect to the Q-values,
where the initial Q-values are set to large values, larger than their optimal values.
We show that optimistic Q-Iearning converges to an E-optimal policy if the initial
Q-values are set sufficiently large.

Let fiT == rr;=l (1 - ai). We set the initial conditions of the Q-values as follows:

1
Vs, a: Qo(s, a) = flT Vma:t,

where T == T (E, 8, S, A, a.) will be specified later. Let T}i,T == ai rrj=i+1 (1 - aj) ==
ai(3T/ fii. Note that

T T

Qt+l (s, a).== (l-at)Qt(s, a)+at(rt+,Vi(s/)) == (3TQO(S, a)+L T}i,Tri(S, a)+, L T}i,T"Vti (Si),
i=l i=l



where T == [#(s, a, t)] and Si is the next state arrived at time ti when action a is
performed for the ith time in state s.

First we show that as long as T == [#(s, a, t)] :::; T actions a are performed in state s,
we have Qt(s, a) ~ Vmax ' Latter we will use this to show that action a is performed
at least T times in state s.

Lemma 4.1 In optimistic Q-learning for any state s, action a and time t, such
that T == [#(s, a, t)] :::; T we have Qt(s, a) ~ Vmax ~ Q*(s, a).

Lemma 4.1 follows from the following observation:

. r r f'
Qt(s, a) = f3rQO(s, a) + ~)7i,rri(s,a) + 'Y 2: 17i,rVt;(Si) 2:: / Vmax 2:: V*(s).

i=l i=l T

Now we bound T as a function of the algorithm parameters (Le., E,8, lSI, IAI) and
the learning rate. We need to set T large enough to guarantee that with probability
1 - 8, for any t >-T updates, using the given learning rate, the deviation from the
true value is at most E. Formally, given a sequence X t of i.i.d. random variables
with zero mean and bounded by Vmax , and a learning rate at == (l/[#(s, a, t)])W let
Zt+1 == (1 - D:t)Zt + D:tXt. A time T(E, 8) is an initialization time if Prl'v't ~ T :
Zt :::; E] ~ 1 - 8. The following lemma bounds the initialization time as a function
of the parameter w of the learning rate.

Lemma 4.2 The initialization time for X and a is at most T(E, 8)

c ( (V~r (In(1/8) + In(Vmaxj€))) t), for some constant c.

We define a modified process, in which we update using the optimal value function,
rather than our current estimate. For t ~ 1 we have,

where Sl is the next state. The following lemma bounds the difference between Q*
and Qt.

Lemma 4.3 Consider optimistic Q-learning and let T == T(E, 8) be the initialization
time. Then with probability 1 - 8, for any t > T, we have Q*(s, a) - Q(s, a) :::; E.

Proof: Let T == [#(s, a, t)]. By definition we have

r r

Qt(s, a) == f3rQO(s, a) + 2: 'T/i,rri + 'Y 2: 'T/i,rV*(Si)'
i=l i=l

This implies that,

Q*(s, a) - Q(s, a) == -f3rQO(s, a) + error_r[s, a, t] + error_v[s, a, t]

where error_r[s, a, t] E[R(s, a)] - 2:;=1 'T/i,rri, and error_v[s, a, t]
E[V*(SI)ls, a] - 2:;=1 'T/i,rV*(Si)' We bound both error_r[s, a, t] and error_v[s, a, t]
using Lemma 4.2. Therefore, with probability 1- 8, we have Q*(s, a) - Q(s, a) :::; E,

for any t ~ T. Q.E.D.

Next we bound the difference between our estimate Vi(s) and V*(s).



Lemma 4.4 Consider optimistic Q-learning and let T == T((I-I')E,8/ISIIAI) be
the initialization time. With probability at least 1- 8 for any state s and time t, we
have V*(s) - vt(s) :::; E.

Proof: By Lemma 4.3 we have that with probability 1- {) for every state s, action
a and time t we have Q* (s, a) - Qt(s, a) :::; (1-I')E. We show by induction on t that
V*(s) - vt(s) :::; E, for every state s. For t == 0 we have Vo(s) > Vmax and hence
the claim holds. For the inductive step assume it holds up to time t and show that
it hold for time t + 1. Let (8, a) be the state action pair executed in time t + 1. If.
[#(s, a, t + 1)] :::; T then by Lemma 4.1, vt(s) ~ Vmax ~ V*(s), and the induction
claim holds. Otherwise, let a* be the optimal action at state s, then,

V*(s) - vt+l(S) < Q*(s,a*) - Qt+l(s,a*)

Q*(s,a*) - Qt+l(s,a*) + Qt+l(s,a*) - Qt+l(s,a*)
".

< (1 -I')E + I' L 1Ji,,,.(V*(Si) - vti (Si)),
i==l

where T == [#(s, a, t)], ti is the time when the i-th time the action a is performed
in state 8, and state Si is the next state. Since ti :::; t, by the inductive hypothesis
we have that V* (Si) - vti (Si) :::; E, and therefore,

V* (s) - vt+l (s) :::; (1 - I')E + I'E == E.

Q.E.D.

Lemma 4.5 Consider optimistic Q-learning and let T == T((I-I')E,{)/\SIIAI) be
the initialization time. With probability at least 1 - {) any state action pair (s, a)
that is executed infinitely often is E-optimal, i.e., V*(s) - Q*(s, a) :::; E.

Proof: Given a trajectory let U' be the set of state action pairs that are executed
infinitely often, and let M' be the original MDP M restricted to U'. For M' we
can use the classical convergence proofs, and claim that vt (s) converges to ViII (s )
and Qt(s, a), for (s, a) E U', converges to QMI (s, a), both with probability 1. Since
(8, a) E U' is performed infinitely often it implies that Qt (s, a) converges to vt (s) ==
VM,(s) and therefore QM' (s, a) == ViII (s). By Lemma 4.4 with probability 1- {) we
have that VM(s) - yt(s) :::; E, therefore ViI(s) - QM(s, a) :::; ViI(s) - QM' (s, a) :::; E.

Q.E.D.

A simple corollary is that if we set E small enough, e.g., E < min(s,a){V*(s) 
Q*(s,a)IV*(s) f:. Q*(s,a)}, then optimistic Q-Iearning converges to the optimal
policy. Another simple corollary is the following theorem.

Theorem 4.6 Consider optimistic Q-learning and let T == T((I-I')E, {)/ISIIAI) be
the initialization time. For any constant ~, with probability at least 1 - {) there is
a time T~ > T such that at any time t > T~ the strategy defined by the optimistic
Q-learning is (E + ~)/(1 - ,)-optimal.

5 Incremental Q-Iearning

In this section we describe a new algorithm that we call incremental Q-learning. The
main idea of the algorithm is to achieve a deterministic tradeoff between exploration
and exploitation.

Incremental Q-Iearning is a greedy policy with respect to the estimated Q-values
plus a promotion term. The promotion term of a state-action pair (s, a) is promoted



each time the action a is not executed in state s, and zeroed each time action a is
executed. We show that in incremental Q-Iearning every state-action pair is taken
infinitely often, which implies standard convergence of the estimates. We show that
the fraction of time in which sub-optimal actions are executed vanishes in the limit.
This implies that the strategy defined by incremental Q-Iearning converges, in the
limit, to the optimal policy. Incremental Q-Iearning estimates the Q-function as in
Q-Iearning:

Qt+l(S, a) == (1 - (It(s, a))Qt(s, a) + (It(s, a)(rt(s, a) + IVi(s/))

where Sl is the next state reached when performing action a in state s at time t.
The promotion term At is define as follows:

At+1 (s, a) == 0: t E Ts,a

At+1 (s, a) == At(s, a) + "p([#(s, a, t)]): t E Ts,not(a)

At+1 (s, a) == At(s, a): t E Tnot(s) ,

where "p(i) is a promotion junction which in our case depends only on the number
of times we performed (s, a' ), al :j:. a, since the last time we performed (s, a). We
say that a promotion function "p is well-behaved if: (1) The function "p converges to
zero, Le., limi-+oo 'ljJ(i) == 0, and (2) "p(1) == 1 and 'ljJ(k) > "p(k+ 1) > o. For example
"p(i) == t is well behaved promotion function.

Incremental Q-Iearning is a greedy policy with respect to St(s, a) == Qt(s, a) +
At(s, a). First we show that Qt, in incremental Q-Iearning, converges to Q*.

Lemma 5.1 Consider incremental Q-Iearning using a well-behaved learning rate
and a well-behaved promotion function. Then Qt converges to Q* with probability
1.

Proof: Since the learning rate is well-behaved, we need only to show that each state
action pair is performed infinitely often. We show that each state that is visited
infinitely often, all of its actions are performed infinitely often. Since the MDP is
uni-chain this will imply that with probability 1 we reach all states infinitely often,
which completes the proof.

Assume that state s is visited infinitely often. Since s is visited infinitely often,
there has to be a non-empty subset of the actions AI which are performed infinitely
often in s. The proof is by contradiction, namely assume that AI :j:. A. Let tl be the
last time that an action not in A' is performed in state s. Since"p is well behaved
we have that 'ljJ(tl) is constant for a fixed tl , it implies that At(s, a) diverges for
a fj. AI. Therefore, eventually we reach a time t2 > tl such that At2 (s, a) > Vmax ,
for every a fj. AI. Since the actions in AI are performed infinitely often there is a
time t3 > t2 such that each action al E AI is performed at least once in [t2, ts]. This
implies that Ata (s, a) > Vmax + Ata (s, al

) for any al E AI and a fj. AI. Therefore,
some action in a E A \ AI will be performed after t1 , contradicting our assumption.
Q.E.D.
The following lemma shows that the frequency of sub-optimal actions vanishes.

Lemma 5.2 Consider incremental Q-learning using a well behaved learning rate
and a well behaved promotion function. Let It(s, a) == ITs,al/ITsl and (s, a) be any
sub-optimal state-action pair. Then limt-+oo It(s, a) == 0, with probability 1.

The intuition behind Lemma 5.2 is the following. Let a* be an optimal action in
state s and a be a sub-optimal action. By Lemma 5.1, with probability 1 both
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Figure 1: Example of 50 states MDP, where the discount factor, {, is 0.9. The
leaning rate of both Incremantal and epsilon greedy Q-Iearning is set to 0.8. The
dashed line represents the epsilon greedy Q-Iearning.

Qt(s, a*) converges to Q*(s, a*) == V*(s) and Qt(s, a) converges to Q*(s, a). This
implies, intuitively, that At(s, a) has to be at least V*(s) - Q*(s, a) == h > 0 for
(s, a) to be executed. Since the promotion function is well behaved, the number
of time steps required until At(s, a) changes from 0 to h increases after each time
we perform (s,a). Since the inter-time between executions of (s,a) diverges, the
frequency ft(s, a) vanishes.

The following corollary gives a quantitative bound.

Corollary 5.3 Consider incremental Q-learning with learning rate at(s, a) ==
l/[#(s, a, t)] and '¢(k) == l/ek . Let (s, a) be a sub-optimal state-action pair. The

number of times (s, a) is performed in the first n visits to state s is 8( V'(s~~~(s,a»)'

for sufficiently large n.

Furthermore, the return obtained by incremental Q-Iearning converges to the opti
mal return.

Corollary 5.4 Consider incremental Q-learning using a well behaved learning rate
and a well behaved promotion function. For every € there exists a time Tf such that
for any t > T f we have that the strategY.1T defined by incremental Q-Iearning is
€-optimal with probability 1.

6 Experiments

In this section we show some experimental results, comparing Incremental Q
Learning and epsilon-greedy Q-Learning. One can consider incremental Q-Iearning

. as a derandomization of €t-greedy Q-Learning, where the promotion function satis
fies 'l/Jt == €t··



The experiment was made on MDP, which includes 50 states and two actions per
state. Each state action pair immediate reward is randomly chosen in the interval
[0, 10]. For each state and action (s, a) the next state transition is random,i.e., for

every state Sl we have a random variable X:: a
E [0, 1] and PS~SI = E:::;.a. For

the €t-greedy Q-Iearning, we have €t == 10000/t at time t, while for the incremental
we have 'l/Jt == 10000/t. Each result in the experiment is an average of ten different
runs. In Figure 1, we observe similar behavior of the two algorithms. This experi
ment demonstrates the strong experimental connection between these methods. We
plan to further investigate the theoretical connection between €-greedy, Boltzman
machine and incremental Q-Learning.

7 Acknowledgements

This research was supported in part by a grant from the Israel Science Foundation.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[2] V.S. Borkar and S.P. Meyn. The O.D.E. method for convergence of stochastic
approximation and reinforcement learning. Siam J. control, 38 (2):447-69,
2000.

[3] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algo
rithm for near-optimal reinforcement learning. m IJCAI, 2001.

[4] E. Even-Dar and Y. Mansour. Learning rates for Q-Iearning. m COLT, 2001.

[5] J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential
design of experiments. Progress in Statistics, pages 241 -266, 1974.

[6] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6, 1994.

[7] M. Kearns and S. Singh. Efficient reinforcement learning: theoretical frame
work and algorithms. In fCML, 1998.

[8] M. Littman and Cs. Szepesvari. A generalized reinforcement learning model:
convergence and applications. m ICML, 1996.

[9] M.L Puterman. Markov Decision Processes - Discrete Stochastic Dynamic
Programming. John Wiley & Sons. mc., New York, NY, 1994.

[10] R. S. Sutton and A. G. Bato. Reinforcement Learning. MIT press, 1998.

[11] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-Iearning. Ma
chine Learning, 16:185-202, 1994.

[12] C. Watkins and P. Dyan. Q-Iearning. Machine Learning, 8(3/4):279 -292,
1992.

[13] C. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Univer
sity, 1989.


