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Abstract

We consider the use of two additive control variate methods to reduce
the variance of performance gradient estimates in reinforcement learn-
ing problems. The first approach we consider is the baseline method,
in which a function of the current state is added to the discounted value
estimate. We relate the performance of these methods, which use sam-
ple paths, to the variance of estimates based on iid data. We derive the
baseline function that minimizes this variance, and we show that the vari-
ance for any baseline is the sum of the optimal variance and a weighted
squared distance to the optimal baseline. We show that the widely used
average discounted value baseline (where the reward is replaced by the
difference between the reward and its expectation) is suboptimal. The
second approach we consider is the actor-critic method, which uses an
approximate value function. We give bounds on the expected squared
error of its estimates. We show that minimizing distance to the true value
function is suboptimal in general; we provide an example for which the
true value function gives an estimate with positive variance, but the op-
timal value function gives an unbiased estimate with zero variance. Our
bounds suggest algorithms to estimate the gradient of the performance of
parameterized baseline or value functions. We present preliminary exper-
iments that illustrate the performance improvements on a simple control
problem.

1 Introduction, Background, and Preliminary Results

In reinforcement learning problems, the aim is to select a controller that will maximize
the average reward in some environment. We model the environment as a partially ob-
servable Markov decision process (POMDP). Gradient ascent methods (e.g., [7, 12, 15])
estimate the gradient of the average reward, usually using Monte Carlo techniques to cal-
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culate an average over a sample path of the controlled POMDP. However such estimates
tend to have a high variance, which means many steps are needed to obtain a good esti-
mate. GPOMDP [4] is an algorithm for generating an estimate of the gradient in this way.
Compared with other approaches, it is suitable for large systems, when the time between
visits to a state is large but the mixing time of the controlled POMDP is short. However, it
can suffer from the problem of producing high variance estimates. In this paper, we investi-
gate techniques for variance reduction in GPOMDP. One generic approach to reducing the
variance of Monte Carlo estimates of integrals is to use an additive control variate (see, for
example, [6]). Suppose we wish to estimate the integral of f : X → R, and we know the
integral of another function ϕ : X → R. Since

∫

X
f =

∫

X
(f − ϕ) +

∫

X
ϕ, the integral

of f − ϕ can be estimated instead. Obviously if ϕ = f then the variance is zero. More
generally, Var(f − ϕ) = Var(f) − 2Cov(f, ϕ) + Var(ϕ), so that if φ and f are strongly
correlated, the variance of the estimate is reduced.

In this paper, we consider two approaches of this form. The first (Section 2) is the technique
of adding a baseline. We find the optimal baseline and we show that the additional variance
of a suboptimal baseline can be expressed as a weighted squared distance from the optimal
baseline. Constant baselines, which do not depend on the state or observations, have been
widely used [13, 15, 9, 11]. In particular, the expectation over all states of the discounted
value of the state is a popular constant baseline (where, for example, the reward at each
step is replaced by the difference between the reward and the expected reward). We give
bounds on the estimation variance that show that, perhaps surprisingly, this may not be the
best choice.

The second approach (Section 3) is the use of an approximate value function. Such actor-
critic methods have been investigated extensively [3, 1, 14, 10]. Generally the idea is
to minimize some notion of distance between the fixed value function and the true value
function. In this paper we show that this may not be the best approach: selecting the fixed
value function to be equal to the true value function is not always the best choice. Even
more surprisingly, we give an example for which the use of a fixed value function that is
different from the true value function reduces the variance to zero, for no increase in bias.
We give a bound on the expected squared error (that is, including the estimation variance)
of the gradient estimate produced with a fixed value function. Our results suggest new
algorithms to learn the optimum baseline, and to learn a fixed value function that minimizes
the bound on the error of the estimate. In Section 5, we describe the results of preliminary
experiments, which show that these algorithms give performance improvements.

POMDP with Reactive, Parameterized Policy

A partially observable Markov decision process (POMDP) consists of a state space, S,
a control space, U , an observation space, Y , a set of transition probability matrices
{P(u) : u ∈ U}, each with components pij(u) for i, j ∈ S, u ∈ U , an observation pro-
cess ν : S → PY , where PY is the space of probability distributions over Y , and a
reward function r : S → R. We assume that S,U ,Y are finite, although all our re-
sults extend easily to infinite U and Y , and with more restrictive assumptions can be
extended to infinite S. A reactive, parameterized policy for a POMDP is a set of map-
pings {µ(·, θ) : Y → PU |θ ∈ R

K}. Together with the POMDP, this defines the con-
trolled POMDP (S,U ,Y ,P , ν, r, µ). The joint state, observation and control process,
{Xt, Yt, Ut}, is Markov. The state process, {Xt}, is also Markov, with transition prob-
abilities pij(θ) =

∑

y∈Y,u∈U
νy(i)µu(y, θ)pij(u), where νy(i) denotes the probability of

observation y given the state i, and µu(y, θ) denotes the probability of action u given pa-
rameters θ and observation y. The Markov chain M(θ) = (S,P(θ)) then describes the
behaviour of the process {Xt}.



Assumption 1 The controlled POMDP (S,U ,Y ,P , ν, r, µ) satisfies:
For all θ ∈ R

K there exists a unique stationary distribution satisfying π′(θ) P(θ) = π′(θ).
There is an R < ∞ such that, for all i ∈ S, |r(i)| ≤ R.
There is a B < ∞ such that, for all u ∈ U , y ∈ Y and θ ∈ R

K the deriva-
tives ∂µu(y, θ)/∂θk (1 ≤ k ≤ K) exist, and the vector of these derivatives satisfies
‖∇µu(y, θ)/µu(y, θ)‖ ≤ B, where ‖ · ‖ denotes the Euclidean norm on R

K .

We consider the average reward, η(θ)
def
= limT→∞ E

[

1
T

∑T−1
t=0 r(Xt)

]

. Assumption 1

implies that this limit exists, and does not depend on the start state X0. The aim is to

select a policy to maximize this quantity. Define the discounted value function, Jβ(i, θ)
def
=

limT→∞ E

[

∑T−1
t=0 βtr(Xt)

∣

∣

∣
X0 = i

]

. Throughout the rest of the paper, dependences

upon θ are assumed, and dropped in the notation. For a random vector A, we denote

Var(A) = E

[

(A − E [A])2
]

, where a2 denotes a′a, and a′ denotes the transpose of the

column vector a.

GPOMDP Algorithm

The GPOMDP algorithm [4] uses a sample path to estimate the gradient approximation

∇βη
def
= E

[

∇µu(y)
µu(y) Jβ(j)

]

. As β → 1, ∇βη approaches the true gradient ∇η, but the

variance increases. We consider a slight modification [2]: with Jt
def
=
∑2T

s=t βs−tr(Xs),

∆T
def
=

1

T

T−1
∑

t=0

∇µUt
(Yt)

µUt
(Yt)

Jt+1. (1)

Throughout this paper the process {Xt, Yt, Ut, Xt+1} is generally understood to be gen-
erated by a controlled POMDP satisfying Assumption 1, with X0∼π (ie the initial state
distributed according to the stationary distribution). That is, before computing the gradient
estimates, we wait until the process has settled down to the stationary distribution.

Dependent Samples

Correlation terms arise in the variance quantities to be analysed. We show here that con-
sidering iid samples gives an upper bound on the variance of the general case. The mixing
time of a finite ergodic Markov chain M = (S,P) is defined as

τ
def
= min

{

t > 1 : max
i,j

dTV

(

[

P t
]

i
,
[

P t
]

j

)

≤ e−1

}

,

where [P t]i denotes the ith row of P t and dTV is the total variation distance, dTV (P, Q) =
∑

i |P (i) − Q(i)|.

Theorem 1 Let M = (S,P) be a finite ergodic Markov chain, with mixing time τ , and
let π be its stationary distribution. There are constants L <

√

2|S|e and 0 ≤ α <
exp(−1/(2τ)), which depend only on M , such that, for all f : S → R and all t,
∣

∣Covπ
f (t)

∣

∣ ≤ LαtVarπ(f), where Varπ(f) is the variance of f under π, and Covπ
f (t) is

the auto-covariance of the process {f(Xt)}, where the process {Xt} is generated by M
with initial distribution π. Hence, for some constant Ω∗ ≤ 4Lτ ,

Var

(

1

T

T−1
∑

t=0

f(Xt)

)

≤
Ω∗

T
Varπ(f).



We call (L, τ) the mixing constants of the Markov chain M (or of the controlled POMDP
D; ie the Markov chain (S,P)). We omit the proof (all proofs are in the full version [8]).
Briefly, we show that for a finite ergodic Markov chain M ,

∣

∣Covπ
f (t)

∣

∣ ≤ Rt(M)Varπ(f),

for some Rt(M). We then show that Rt(M)
2

< 2|S| exp(−
⌊

t
τ

⌋

). In fact, for a reversible
chain, we can choose L = 1 and α = |λ2|, the second largest magnitude eigenvalue of P .

2 Baseline

We consider an alteration of (1),

∆T

def
=

1

T

T−1
∑

t=0

∇µUt
(Yt)

µUt
(Yt)

(Jt+1 − Ar(Yt)) . (2)

For any baseline Ar : Y → R, it is easy to show that E [∆T ] = E [∆T ]. Thus, we select
Ar to minimize variance. The following theorem shows that this variance is bounded by a
variance involving iid samples, with Jt replaced by the exact value function.

Theorem 2 Suppose that D = (S,U ,Y ,P , ν, r, µ) is a controlled POMDP satisfying
Assumption 1, D has mixing constants (L, τ), {Xt, Yt, Ut, Xt+1} is a process generated
by D with X0∼π ,Ar : Y → R is a baseline that is uniformly bounded by M, and J (j)
has the distribution of

∑∞

s=0 βsr(Xt), where the states Xt are generated by D starting in
X0 = j. Then there are constants C ≤ 5B2

R(R + M) and Ω ≤ 4Lτ ln(eT ) such that

Var

(

1

T

T−1
∑

t=0

∇µUt
(Yt)

µUt
(Yt)

(Jt+1−Ar(Yt))

)

≤
Ω

T
Varπ

(

∇µu(y)

µu(y)
(Jβ(j)−Ar(y))

)

+
Ω

T
E

(

∇µu(y)

µu(y)
(J (j) − Jβ(j))

)2

+

(

Ω

T
+ 1

)

C

(1 − β)2
βT ,

where, as always, (i, y, u, j) are generated iid with i∼π, y∼ν(i), u∼µ(y) and j∼Pi(u).

The proof uses Theorem 1 and [2, Lemma 4.3]. Here we have bounded the variance of (2)
with the variance of a quantity we may readily analyse. The second term on the right hand
side shows the error associated with replacing an unbiased, uncorrelated estimate of the
value function with the true value function. This quantity is not dependent on the baseline.
The final term on the right hand side arises from the truncation of the discounted reward—
and is exponentially decreasing. We now concentrate on minimizing the variance

σ2
r = Varπ

(

∇µu(y)

µu(y)
(Jβ(j) − Ar(y))

)

, (3)

which the following lemma relates to the variance σ2 without a baseline,

σ2 = Varπ

(

∇µu(y)

µu(y)
Jβ(j)

)

.

Lemma 3 Let D = (S,U ,Y ,P , ν, r, µ) be a controlled POMDP satisfying Assumption 1.
For any baseline Ar : Y → R, and for i∼π, y∼ν(i), u∼µ(y) and j∼Pi(u),

σ2
r = σ2 + E

[

A2
r(y) E

[

(

∇µu(y)

µu(y)

)2
∣

∣

∣

∣

∣

y

]

− 2Ar(y)E

[

(

∇µu(y)

µu(y)

)2

Jβ(j)

∣

∣

∣

∣

∣

y

]]

.

From Lemma 3 it can be seen that the task of finding the optimal baseline is in effect that
of minimizing a quadratic for each observation y ∈ Y . This gives the following theorem.



Theorem 4 For the controlled POMDP as in Lemma 3,

min
Ar

σ2
r = σ2 − E





(

E

[

(

∇µu(y)

µu(y)

)2

Jβ(j)

∣

∣

∣

∣

∣

y

])2

/E

[

(

∇µu(y)

µu(y)

)2
∣

∣

∣

∣

∣

y

]



 ,

and this minimum is attained with the baseline

A∗
r(y) = E

[

(

∇µu(y)

µu(y)

)2

Jβ(j)

∣

∣

∣

∣

∣

y

]

/E

[

(

∇µu(y)

µu(y)

)2
∣

∣

∣

∣

∣

y

]

.

Furthermore, the optimal constant baseline is

A∗
r = E

[

(

∇µu(y)

µu(y)

)2

Jβ(j)

]

/E

(

∇µu(y)

µu(y)

)2

.

The following theorem shows that the variance of an estimate with an arbitrary baseline
can be expressed as the sum of the variance with the optimal baseline and a certain squared
weighted distance between the baseline function and the optimal baseline function.

Theorem 5 If Ar : Y → R is a baseline function, A∗
r is the optimal baseline defined in

Theorem 4, and σ2
r∗ is the variance of the corresponding estimate, then

σ2
r = σ2

r∗ + E

[

(

∇µu(y)

µu(y)

)2

(Ar(y) − A∗
r(y))

2

]

,

where i∼π, y∼ν(i), and u∼µ(y). Furthermore, the same result is true for the case of
constant baselines, with Ar(y) replaced by an arbitrary constant baseline Ar, and A∗

r(y)
replaced by A∗

r , the optimum constant baseline defined in Theorem 4.

For the constant baseline Ar = E i∼π [Jβ(i)], Theorem 5 implies that σ2
r is equal to

min
Ar∈R

σ2
r +

(

E

(

∇µu(y)

µu(y)

)2

E [Jβ(j)] − E

[

(

∇µu(y)

µu(y)

)2

Jβ(j)

])2

/E

(

∇µu(y)

µu(y)

)2

.

Thus, its performance depends on the random variables (∇µu(y)/µu(y))2 and Jβ(j); if
they are nearly independent, E [Jβ ] is a good choice.

3 Fixed Value Functions: Actor-Critic Methods

We consider an alteration of (1),

∆̃T
def
=

1

T

T−1
∑

t=0

∇µUt
(Yt)

µUt
(Yt)

J̃β(Xt+1), (4)

for some fixed value function J̃β : S → R. Define

Aβ(j)
def
= E

[

∞
∑

k=0

βkd(Xk, Xk+1)

∣

∣

∣

∣

∣

X0 = j

]

,

where d(i, j)
def
= r(i) + βJ̃β(j)− J̃β(i) is the temporal difference. Then it is easy to show

that the estimate (4) has a bias of

∇βη − E

[

∆̃T

]

= E

[

∇µu(y)

µu(y)
Aβ(j)

]

.

The following theorem gives a bound on the expected squared error of (4). The main tool
in the proof is Theorem 1.



Theorem 6 Let D = (S,U ,Y ,P , ν, r, µ) be a controlled POMDP satisfying Assump-
tion 1. For a sample path from D, that is, {X0∼π, Yt∼ν(Xt), Ut∼µ(Yt), Xt+1∼PXt

(Ut)},

E

[

(

∆̃T −∇βη
)2
]

≤
Ω∗

T
Varπ

(

∇µu(y)

µu(y)
J̃β(j)

)

+

(

E

[

∇µu(y)

µu(y)
Aβ(j)

])2

,

where the second expectation is over i∼π, y∼ν(i), u∼µ(y), and j∼Pi(u).

If we write J̃β(j) = Jβ(j) + v(j), then by selecting v = (v(1), . . . , v(|S|))′ from the right

null space of the K × |S| matrix G, where G
def
=
∑

i,y,u πiνy(i)∇µu(y)P ′
i(u), (4) will

produce an unbiased estimate of ∇βη. An obvious example of such a v is a constant
vector, (c, c, . . . , c)′ : c ∈ R. We can use this to construct a trivial example where (4)
produces an unbiased estimate with zero variance. Indeed, let D = (S,U ,Y ,P , ν, r, µ) be
a controlled POMDP satisfying Assumption 1, with r(i) = c, for some 0 < c ≤ R. Then
Jβ(j) = c/(1 − β) and ∇βη = 0. If we choose v = (−c/(1 − β), . . . ,−c/(1 − β))′ and

J̃β(j) = Jβ(j) + v(j), then ∇µu(y)
µu(y) J̃β(j) = 0 for all y, u, j, and so (4) gives an unbiased

estimate of ∇βη, with zero variance. Furthermore, for any D for which there exists a pair
y, u such that µu(y) > 0 and ∇µu(y) 6= 0, choosing J̃β(j) = Jβ(j) gives a variance
greater than zero—there is a non-zero probability event, (Xt = i, Yt = y, Ut = u, Xt+1 =

j), such that ∇µu(y)
µu(y) Jβ(j) 6= 0.

4 Algorithms

Given a parameterized class of baseline functions
{

Ar(·, θ) : Y → R
∣

∣θ ∈ R
L
}

, we can
use Theorem 5 to bound the variance of our estimates. Computing the gradient of this
bound with respect to the parameters θ of the baseline function allows a gradient optimiza-
tion of the baseline. The GDORB Algorithm produces an estimate ∆S of these gradients
from a sample path of length S. Under the assumption that the baseline function and its
gradients are uniformly bounded, we can show that these estimates converge to the gradient
of σ2

r . We omit the details (see [8]).

GDORB Algorithm:

Given: Controlled POMDP (S,U ,Y ,P , ν, r, µ), parameterized baseline Ar.
set z0 = 0 (z0 ∈ R

L), ∆0 = 0 (∆0 ∈ R
L)

for all {is, ys, us, is+1, ys+1} generated by the POMDP do

zs+1 = βzs + ∇Ar(ys)
(

∇µ
us

(ys)

µus
(ys)

)2

∆s+1 = ∆s + 1
s+1 ((Ar(ys) − βAr(ys+1) − r(xs+1)) zs+1 − ∆s)

end for

For a parameterized class of fixed value functions {J̃β(·, θ) : S → R
∣

∣θ ∈ R
L }, we can

use Theorem 6 to bound the expected squared error of our estimates, and compute the
gradient of this bound with respect to the parameters θ of the baseline function. The GBTE
Algorithm produces an estimate ∆S of these gradients from a sample path of length S.
Under the assumption that the value function and its gradients are uniformly bounded, we
can show that these estimates converge to the true gradient.

GBTE Algorithm:

Given: Controlled POMDP (S,U ,Y ,P , ν, r, µ), parameterized fixed value function J̃β.
set z0 = 0 (z0 ∈ R

K), ∆A0 = 0 (∆A0 ∈ R
1×L), ∆B0 = 0 (∆B0 ∈ R

K), ∆C0 = 0
(∆C0 ∈ R

K) and ∆D0 = 0 (∆D0 ∈ R
K×L)



for all {is, ys, us, is+1, is+2} generated by the POMDP do

zs+1 = βzs +
∇µ

us
(ys)

µus
(ys)

∆As+1 = ∆As + 1
s+1

(

(

∇µ
us

(ys)

µus
(ys) J̃β(is+1)

)′
(

∇µ
us

(ys)

µus
(ys)

(

∇J̃β(is+1)
)′
)

− ∆As

)

∆Bs+1 = ∆Bs + 1
s+1

(

∇µ
us

(ys)

µus
(ys)

J̃β(is+1) − ∆Bs

)

∆Cs+1 = ∆Cs + 1
s+1

((

r(is+1) + βJ̃β(is+2) − J̃β(is+1)
)

zs+1 − ∆Cs

)

∆Ds+1 = ∆Ds + 1
s+1

(

∇µ
us

(ys)

µus
(ys)

(

∇J̃β(is+1)
)′

− ∆Ds

)

∆s+1 =
(

Ω∗

T
∆As+1 −

Ω∗

T
∆B′

s+1∆Ds+1 − ∆C ′
s+1∆Ds+1

)′

end for

5 Experiments

Experimental results comparing these GPOMDP variants for a simple three state MDP
(described in [5]) are shown in Figure 1. The exact value function plots show how differ-
ent choices of baseline and fixed value function compare when all algorithms have access
to the exact value function Jβ. Using the expected value function as a baseline was an
improvement over GPOMDP. Using the optimum, or optimum constant, baseline was a
further improvement, each performing comparably to the other. Using the pre-trained fixed
value function was also an improvement over GPOMDP, showing that selecting the true
value function was indeed not the best choice in this case. The trained fixed value function
was not optimal though, as Jβ(j) − A∗

r is a valid choice of fixed value function.

The optimum baseline, and fixed value function, will not normally be known. The online
plots show experiments where the baseline and fixed value function were trained using on-
line gradient descent whilst the performance gradient was being estimated, using the same
data. Clear improvement over GPOMDP is seen for the online trained baseline variant. For
the online trained fixed value function, improvement is seen until T becomes—given the
simplicity of the system—very large.
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