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Abstract

We are interested in the mechanisms by which individuals monitor and
adjust their performance of simple cognitive tasks. We model a speeded
discrimination task in which individuals are asked to classify a sequence
of stimuli (Jones & Braver, 2001). Response conflict arises when one
stimulus class is infrequent relative to another, resulting in more errors
and slower reaction times for the infrequent class. How do control pro-
cesses modulate behavior based on the relative class frequencies? We
explain performance from a rational perspective that casts the goal of
individuals as minimizing a cost that depends both on error rate and re-
action time. With two additional assumptions of rationality—that class
prior probabilities are accurately estimated and that inference is optimal
subject to limitations on rate of information transmission—we obtain a
good fit to overall RT and error data, as well as trial-by-trial variations in
performance.

Consider the following scenario: While driving, you approach an intersection at which the
traffic light has already turned yellow, signaling that it is about to turn red. You also notice
that a car is approaching you rapidly from behind, with no indication of slowing. Should
you stop or speed through the intersection? The decision is difficult due to the presence of
two conflicting signals. Such response conflict can be produced in a psychological labo-
ratory as well. For example, Stroop (1935) asked individuals to name the color of ink on
which a word is printed. When the words are color names incongruous with the ink color—
e.g., “blue” printed in red—reaction times are slower and error rates are higher. We are in-
terested in the control mechanisms underlying performance of high-conflict tasks. Conflict
requires individuals to monitor and adjust their behavior, possibly responding more slowly
if errors are too frequent.

In this paper, we model a speeded discrimination paradigm in which individuals are asked
to classify a sequence of stimuli (Jones & Braver, 2001). The stimuli are letters of the
alphabet, A–Z, presented in rapid succession. In a choice task, individuals are asked to
press one response key if the letter is an X or another response key for any letter other than
X (as a shorthand, we will refer to non-X stimuli as Y). In a go/no-go task, individuals



are asked to press a response key when X is presented and to make no response otherwise.
We address both tasks because they elicit slightly different decision-making behavior. In
both tasks, Jones and Braver (2001) manipulated the relative frequency of the X and Y
stimuli; the ratio of presentation frequency was either 17:83, 50:50, or 83:17. Response
conflict arises when the two stimulus classes are unbalanced in frequency, resulting in more
errors and slower reaction times. For example, when X’s are frequent but Y is presented,
individuals are predisposed toward producing the X response, and this predisposition must
be overcome by the perceptual evidence from the Y.

Jones and Braver (2001) also performed an fMRI study of this task and found that anterior
cingulate cortex (ACC) becomes activated in situations involving response conflict. Specif-
ically, when one stimulus occurs infrequently relative to the other, event-related fMRI re-
sponse in the ACC is greater for the low frequency stimulus. Jones and Braver also ex-
tended a neural network model of Botvinick, Braver, Barch, Carter, and Cohen (2001) to
account for human performance in the two discrimination tasks. The heart of the model
is a mechanism that monitors conflict—the posited role of the ACC—and adjusts response
biases accordingly. In this paper, we develop a parsimonious alternative account of the role
of the ACC and of how control processes modulate behavior when response conflict arises.

1 A RATIONAL ANALYSIS

Our account is based on a rational analysis of human cognition, which views cognitive
processes as being optimized with respect to certain task-related goals, and being adaptive
to the structure of the environment (Anderson, 1990). We make three assumptions of ratio-
nality: (1) perceptual inference is optimal but is subject to rate limitations on information
transmission, (2) response class prior probabilities are accurately estimated, and (3) the
goal of individuals is to minimize a cost that depends both on error rate and reaction time.

The heart of our account is an existing probabilistic model that explains a variety of fa-
cilitation effects that arise from long-term repetition priming (Colagrosso, in preparation;
Mozer, Colagrosso, & Huber, 2000), and more broadly, that addresses changes in the na-
ture of information transmission in neocortex due to experience. We give a brief overview
of this model; the details are not essential for the present work.

The model posits that neocortex can be characterized by a collection of information-
processing pathways, and any act of cognition involves coordination among pathways.
To model a simple discrimination task, we might suppose a perceptual pathway to map
the visual input to a semantic representation, and a response pathway to map the semantic
representation to a response. The choice and go/no-go tasks described earlier share a per-
ceptual pathway, but require different response pathways. The model is framed in terms of
probability theory: pathway inputs and outputs are random variables and microinference in
a pathway is carried out by Bayesian belief revision.

To elaborate, consider a pathway whose input at time � is a discrete random variable,
denoted ������� , which can assume values �	��
��������������� corresponding to alternative input
states. Similarly, the output of the pathway at time � is a discrete random variable, denoted� ����� , which can assume values ����
��������������� . For example, the input to the perceptual
pathway in the discrimination task is one of ������
�� visual patterns corresponding to the
letters of the alphabet, and the output is one of � � � 
	� letter identities. (This model is
highly abstract: the visual patterns are enumerated, but the actual pixel patterns are not
explicitly represented in the model. Nonetheless, the similarity structure among inputs can
be captured, but we skip a discussion of this issue because it is irrelevant for the current
work.) To present a particular input alternative, ! , to the model for " time steps, we clamp
�������#�$! for �%�&�'�����(" . The model computes a probability distribution over

�
given � ,

i.e., P � � �����#)������*�+�����(��������� .
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Figure 1: (left panel) basic pathway architecture—a hidden Markov model; (right panel)
time course of inference in a pathway

A pathway is modeled as a dynamic Bayes network; the minimal version of the model used
in the present simulations is simply a hidden Markov model, where the ������� are observa-
tions and the

� ����� are inferred state (see Figure 1, left panel). (In typical usage, an HMM is
presented with a sequence of distinct inputs, whereas we maintain the same input for many
successive time steps. Further, in typical usage, an HMM transitions through a sequence
of distinct hidden states, whereas we attempt to converge with increasing confidence on
a single state. Thus, our model captures the time course of information processing for a
single event.)

To compute P � � �����%)������*�+�����(� ������� , three probability distributions must be specified: (1)
P � � ����� ) � ��� � �*� � , which characterizes how the pathway output evolves over time, (2)
P ��������� ) � ������� , which characterizes the strength of association between inputs and outputs,
and (3) P � � � � ��� , the prior distribution over outputs in the absence of any information
about the input. The particular values hypothesized for these three distributions embody the
knowledge of the model—like weights in a neural networks—and give rise to predictions
from the model.

To give a sense of how the Mozer et al. (2000) model operates, the right panel of Figure 1
depicts the time course of inference in a single pathway which has 26 input and output
alternatives, with one-to-one associations. The solid line in the Figure shows, as a function
of time � , P � � ����� � � )����(� � � � ������������� � �*� , i.e., the probability that a given input
will produce its target output. Due to limited association strengths, perceptual evidence
must accumulate over many iterations in order for the target to be produced with high
probability. The densely dashed line shows the same target probability when the target prior
is increased, and the sparsely dashed line shows the target probability when the association
strength to the target is increased. Increasing either the prior or the association strength
causes the speed-accuracy curve to shift to the left. In our previous work, we proposed a
mechanism by which priors and association strengths are altered through experience.

1.1 Model Details

The simulations we report in this paper utilize two pathways in cascade. A perceptual
pathway maps visual patterns (26 alternatives) to a letter-identity representation (26 alter-
natives), and a response pathway maps the letter identity to a response. For the choice task,
the response pathway has two outputs, corresponding to the two response keys; for the
go/no-go task, the response pathway also has two outputs, which are interpreted as “go”
and “no go.” The interconnection between the pathways is achieved by copying the output
of the perceptual pathway,

��� ����� , to the input of the response pathway, ��������� , at each time.
The free parameters of the model are mostly task and experience related. Nonetheless, in
the current simulations we used the same parameter values as Mozer et al. (2000), with one
exception: Because the speeded perceptual discrimination task studied here is quite unlike



the tasks studied by Mozer et al., we allowed ourselves to vary the association-strength
parameter in the response pathway. This parameter has only a quantitative, not qualitative,
influence on predictions of the model.

In our simulations, we also use the priming mechanism proposed by Mozer et al. (2000),
which we briefly describe. The priors for a pathway are internally represented in a nonnor-
malized form: the nonnormalized prior for alternative ! is ��� , and the normalized prior is
P � � � � � � !(� ��� �����	� � � . On each trial, the priming mechanism increases the nonnor-
malized prior of alternative ! in proportion to its asymptotic activity at final time " , and
and all priors undergo exponential decay: 
���� �� P � � ��" � � ! ) � � ��� ��� , where  is the
strength of priming, and � is the decay rate. (The Mozer et al. model also performs priming
in the association strengths by a similar rule, which is included in the present simulation
although it has a negligible effect on the results here.)

This priming mechanism yields priors on average that match the presentation probabilities
in the task, e.g., .17 and .83 for the two responses in the 17:83 condition of the Jones
and Braver experiment. Consequently, when we report results for overall error rate and
reaction time in a condition, we make the assumption of rationality that the model’s priors
correspond to the true priors of the environment. Although the model yields the same
result when the priming mechanism is used on a trial-by-trial basis to adjust the priors, the
explicit assumption of rationality avoids any confusion about the factors responsible for the
model’s performance. We use the priming mechanism on a trial-by-trial basis to account
for performance conditional on recent trial history, as explained later.

1.2 Control Processes and the Speed-Accuracy Trade Off

The response pathway of the model produces a speed-accuracy performance function much
like that in Figure 1b. This function characterizes the operation of the pathway, but it does
not address the control issue of when in time to initiate a response. A control mechanism
might simply choose a threshold in accuracy or in reaction time, but we hypothesize a more
general, rational approach in which a response cost is computed, and control mechanisms
initiate a response at the point in time when a minimum in cost is attained.

When stimulus S is presented and the correct response is R, we posit a cost of responding
at time � following stimulus onset:

� ���%) S � R � � P � � � �������� R ) S ���	��� � � (1)

This cost involves two terms—the error rate and the reaction time—which are summed,
with a weighting factor, � � , that determines the relative importance of the two terms. We
assume that � is dependent on task instructions: if individuals are told to make no errors, �
should be small to emphasize the error rate; if individuals are told to respond quickly and
not concern themselves with occasional errors, � should be large to emphasize the reaction
time.

The cost � ���') S � R � cannot be computed without knowing the correct response R. Nonethe-
less, the control mechanism could still compute an expected cost over the � �� alternative
responses based on the model’s current estimate of the likelihood of each:

E � � ���#) S � R ��� �
���� 
�"!$#

P � � � �����'� !') S � � ���%) S ��!(� (2)

It is this expected cost that is minimized to determine the appropriate point in time at which
to respond. We index � � by the response R because it is not sensible to assign a time cost
to a “no go” response, where no response is produced. Consequently, � �&%('�)(% � � ; for the
“go” response and for the two responses in the choice task, we searched for the parameter
that best fit the data, yielding � � � �+* .
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Figure 2: (upper row) Output of response pathway when stimulus S, associated with re-
sponse R, is presented, and relative frequency of R and the alternative response, �R, is
17:83, 50:50, and 83.17. (lower row) Expected cost of responding (Eqn. 2).

2 RESULTS
Figure 2 illustrates the model’s performance on the choice task when presented with a stim-
ulus, S, associated with a response, R, and the relative frequency of R and the alternative
response, �R, is 17:83, 50:50, or 83:17 (left, center, and right columns, respectively). Each
graph in the top row plots the probability of R and �R against time. Although R wins out
asymptotically in all three conditions, it must overcome the effect of its low prior in the
17:83 condition. Each graph in the bottom row plots the expected cost, � ����� , over time.
In the early part of the cost function, error rate dominates the cost, and in the late part,
reaction time dominates. In fact, at long times, the error rate is essentially 0, and the cost
grows linearly with reaction time. Our rational analysis suggests that a response should be
initiated at the global minimum—indicated by asterisks in the figure—implying that both
the reaction time and error rate will decrease as the response prior is increased.

Figure 3 presents human and simulation data for the choice task. The data consist of mean
reaction time and accuracy for the two target responses,

� # and
���

, for the three condi-
tions corresponding to different

� # : � �
presentation ratios. Figure 4 presents human and

simulation data for the go/no-go task. Note that reaction times are shown only for the “go”
trials, because no response is required for the “no go” trials. For both tasks, the model
provides an extremely good fit to the human data. The qualities of the model giving rise to
the fit can be inferred by inspection of Figure 2—namely, accuracy is higher and reaction
times are faster when a response is expected.

Figure 5 reveals how the recent history of experimental trials influences reaction time and
error rate in the choice task. The trial context along the x-axis is coded as �����	�
�

�
� # , where

� � specifies that trial � � ! required the same (“S”) or different (“D”) response as trial � � !(�
� . For example, if the current trial required response X, and the four trials leading up to the
current trial were—in forward temporal order—Y, Y, Y, and X, the current trial’s context
would be coded as “SSDS.” The correlation coefficient between human and simulation data
is .960 for reaction time and .953 for error rate.

The model fits the human data extremely well. The simple priming mechanism proposed
previously by Mozer et al. (2000), which aims to adapt the model’s priors rapidly to the
statistics of the environment, is responsible: On a coarse time scale, the mechanism pro-
duces priors in the model that match priors in the environment. On a fine time scale,
changes to and decay of the priors results in a strong effect of recent trial history, consistent
with the human data: The graphs in Figure 5 show that the fastest and most accurate trials
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Figure 3: Human data (left
column) and simulation results
(right column) for the choice
task. Human data from Jones
and Braver (2001). The upper
and lower rows show mean re-
action time and accuracy, re-
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� # and
� �

) in the
three conditions corresponding
to different
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Figure 4: Human data (left
column) and simulation results
(right column) for the go/no-
go task. Human data from
Jones and Braver (2001). The
upper and lower rows show
mean reaction time and accu-
racy, respectively, for the two
responses (go and no-go) in the
three conditions corresponding
to different go:no-go presenta-
tion frequencies.

are clearly those in which the previous two trials required the same response as the current
trial (the leftmost four contexts in each graph). The fit to the data is all the more impressive
given that Mozer et al. priming mechanism was used to model perceptual priming, and
here the same mechanism is used to model response priming.

3 DISCUSSION

We introduced a probabilistic model based on three principles of rationality: (1) perceptual
inference is optimal but is subject to rate limitations on information transmission, (2) re-
sponse class prior probabilities are accurately estimated, and (3) the goal of individuals is
to minimize a cost that depends both on error rate and reaction time. The model provides
a parsimonious account of the detailed pattern of human data from two speeded discrimi-
nation tasks. The heart of the model was proposed previously by Mozer, Colagrosso, and
Huber (2000), and in the present work we fit experimental data with only two free parame-
ters, one relating to the rate of information flow, and the other specifying the relative cost of
speed and errors. The simplicity and elegance of the model arises from having adopted the
rational perspective, which imposes strong constraints on the model and removes arbitrary
choices and degrees of freedom that are often present in psychological models.

Jones and Braver (2001) proposed a neural network model to address response conflict in
a speeded discrimination task. Their model produces an excellent fit to the data too, but
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Figure 5: Reaction time (left curve) and accuracy (right curve) data for humans (solid line)
and model (dashed line), contingent on the recent history of experimental trials.

involves significantly more machinery, free parameters, and ad hoc assumptions. In brief,
their model is an associative net mapping activity from stimulus units to response units.
When response units

� # and
� �

both receive significant activation, noise in the system
can push the inappropriate response unit over threshold. When this conflict situation is
detected, a control mechanism acts to lower the baseline activity of response units, requir-
ing them to build up more evidence before responding and thereby reducing the likelihood
of noise determining the response. Their model includes a priming mechanism to facil-
itate repetition of responses, much as we have in our model. However, their model also
includes a secondary priming mechanism to facilitate alternation of responses, which our
model does not require. Both models address additional data; for example, a variant of
their model predicts a neurophysiological marker of conflict called error-related negativity
(Yeung, Botvinick, & Cohen, 2000).

Jones and Braver posit that the role of the ACC is conflict detection. Our account makes an
alternative proposal—that ACC activity reflects the expected cost of decision making. Both
hypotheses are consistent with the fMRI data indicating that the ACC produces a greater
response for a low frequency stimulus. We are presently considering further experiments
to distinguish these contrasting hypotheses.
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