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Abstract 

We present a new method for the blind separation of sources, which 
do not fulfill the independence assumption. In contrast to standard 
methods we consider groups of neighboring samples ("patches") 
within the observed mixtures. 
First we extract independent features from the observed patches. 
It turns out that the average dependencies between these features 
in different sources is in general lower than the dependencies be
tween the amplitudes of different sources. We show that it might 
be the case that most of the dependencies is carried by only a 
small number of features. Is this case - provided these features 
can be identified by some heuristic - we project all patches into 
the subspace which is orthogonal to the subspace spanned by the 
"correlated" features. 
Standard ICA is then performed on the elements of the transformed 
patches (for which the independence assumption holds) and ro
bustly yields a good estimate of the mixing matrix. 

1 Introduction 

ICA as a method for blind source separation has been proven very useful in a wide 
range of statistical data analysis. A strong criterion, that allows to detect and 
separate linearly mixed source signals from the observed mixtures , is the indepen
dence of the source signals amplitude distribution. Many contrast functions rely on 
this assumption, e.g. in the way, that they estimate the Kullback-Leibler distance 
to a (non-Gaussian) factorizing multivariate distribution [1 , 2, 3]. Others consider 
higher order moments of the source estimates [4, 5]. Naturally these algorithms 
fail when the independence assumption does not hold. In such situations it can be 
very useful to consider temporal/spatial statistical properties of the source signals 
as well. This has been done in form of suitable linear filtering [6] to achieve a sparse 
and independent representation of the signals. In [7] the author suggests to model 
the sources as a stochastic process and to do the ICA on the innovations rather 
than on the signals them self. 
In this work we extend the ICA to multidimensional channels of neighboring realiza
tions. The used data model is explained in detail in the following section. In section 
3 it will be shown, that there are optimal features, that carry lower dependencies 



between the sources and can be used for source separation. A heuristic is intro
duced, that allows to discard those features, that carry most of the dependencies. 
This leads to the Two-Step algorithm described in section 4. Our method requires 
(i) sources which exhibit correlations between neighboring pixels (e.g. continuous 
sources like images or sound signals), and (ii) sources from which sparse and almost 
independent features can be extracted. In section 5 we show separation results and 
benchmarks for linearly mixed passport photographs. The method is fast and pro
vides good separation results even for sources, whose correlation coefficient is as 
large as 0.9. 

2 Sources and observations 

Let us consider a set of N source signals Si(r), i = 1, ... , N of length L, where 
r is a discrete sample index. The sample index could be of arbitrary dimension, 
but we assume that it belongs to some metric space so that neighborhood relations 
can be defined. The sample index might be a scalar for sources which are time 
series and a two-dimensional vector for sources which are images1 . The sources are 
linearly combined by an unknown mixing matrix A of full rank to produce a set of 
N observations Xi(r), 

N 

Xi(r) = l: AijSj(r) , (1) 
j=l 

and we assume that the mixing process is stationary, i.e. that the mixing matrix A is 
independent of r. In the following we refer to the vectors S(r) = (Sl (r), ... ,SN(r))T 
and X(r) = (X1(r), ... , XN(r))T as a source and an observation stack. The goal is 
to find an appropriate demixing matrix W which - when applied to the observations 
X(r) - recovers good estimates S(r), 

S(r) = WX(r) ~ S(r) (2) 

of the original source signals (up to a permutation and scaling of the sources). Since 
the mixing matrix A is not known its inverse W has to be detected blindly, i.e. only 
properties of the sources which are detectable in the mixtures can be exploited. For 
a large class of ICA algorithms one assumes that the sources are non-Gaussian and 
independent, i.e. that the random vector S which is sampled by L realizations 

S: {S(rd, 1= I, ... ,L} (3) 

has a factorizing and non-Gaussian joint probability distribution2 . In situations, 
however, where the independence assumption does not hold, it can be helpful to 
take into account spatial dependencies, which can be very prominent for natural 
signals, and have been subject for a number of blind source separation algorithms 
[8, 9, 6]. Let us now consider patches si(r), 

s(r) = (4) 

1 In the following we will mostly consider images, hence we will refer to the abovemen
tioned neighborhood relations as spatial relations. 

2In the following, symbols without sample index will refer to the random variable rather 
than to the particular realization. 



of M « L neighboring source samples. si(r) could be a sequence of M adjacent 
samples of an audio signal or a rectangular patch of M pixels in an image. Instead 
of L realizations of a random N-vector S (cf. eq. (3)) we now obtain a little less 
than L realizations of a random N x M matrix s, 

s: {s(r)}. (5) 

Because of the stationarity of the mixing process we obtain 

x = As and s = Wx, (6) 

where x is an N x M matrix of neighboring observations and where the matrices 
A and W operate on every column vector of sand x. 

3 Optimal spatial features 

Let us now consider a set of sources which are not statistically independent , i.e. for 
which 

N 

p(S) = p(Slk"'" SNk) :j:. IIp(sik) for all k = 1 ... M. (7) 
i=1 

Our goal is to find in a first step a linear transformation 0 E IRMxM which -
when applied to every patch - yields transformed sources u = sOT for which the 
independence assumption, p(Ulk, ... ,UNk) = rr~1p(Uik) does hold for all k = 
1 .. . M, at least approximately. When 0 is applied to the observations x , v = xOT , 
we obtain a modified source separation problem 

(8) 

where the demixing matrix W can be estimated from the transformed observations 
v in a second step using standard ICA. Eq. (7) is tantamount to positive trans
information of the source amplitudes. 

(9) 

where DKL is the Kullback-Leibler distance. As all elements of the patches are 
equally distributed, this quantity is the same for all k. Clearly, the dependencies, 
that are carried by single elements of the patches, are also present between whole 
patches, i.e. J(S1 , S2,"', SN) > O. However, since neighboring samples are corre
lated, it holds 

M 

J(S1 ,S2, "' ,SN) < LJ(Slk ,S2k"",SNk) . 
k=1 

(10) 

Only if the sources where spatially white and s would consist of independent column 
vectors, this would hold with equality. When 0 is applied to the source patches, 
the trans-information between patches is not changed, provided 0 is a non-singular 
transformation. Neither information is introduced nor discarded by this transfor
mation and it holds 

(11) 



For the optimal 0 now the column vectors of u = sOT shall be independent. From 
(10) and (11) it follows that 

M M 

I(u1 ,u2, " ',uN) = 2::I(ulk,u2k"",uNk) < 2::I(slk ,s2k"",sNk) (12) 
k=1 k=1 

The column vectors of u are in general not equally distributed anymore, however the 
average trans-information has decreased to the level of information carried between 
the patches. In the experiments we shall see that this can be sufficiently small to 
reliably estimate the de-mixing matrix W. 
So it remains to estimate a matrix 0 that provides a matrix u with independent 
columns. We approach this by estimating 0 so that it provides row vectors of 
u that have independent elements, i.e. P(Ui) = IT;!1 P(Uik) for all i. With that 
and under the assumption that all sources may come from the same distribution 
and that there are no "cross dependencies" in u (i.e. p( Uik) is independent from 
p( Ujl) for k :j:. l), the independence is guaranteed also for whole column vectors of 
u. Thus, standard leA can be applied to patches of sources which yields 0 as the 
de-mixing matrix. For real world applications however , 0 has to be estimated from 
the observations xOT = v. It holds the relation v = Au, i.e. A only interchanges 
rows. So column vectors of u are independent to each other if, and only if columns 
of v are independent3 . Thus, 0 can be computed from x as well. 
According to Eq. (12) the trans-information of the elements of columns of u has 
decreased in average, but not necessarily uniformly. One can expect some columns 
to have more independent elements than others. Thus, it may be advantageous to 
detect these columns rsp. the corresponding rows of 0 and discard them prior to the 
second leA step. Each source patch Si can be considered as linear combination of 
independent components, that are given by the columns of 0-1 , where the elements 
of Ui are the coefficients. In the result of the leA, the coefficients have normalized 
variance. Therefore, those components, that have large Euklidian norm, occur as 
features with high entropy in the source patches. At the same time it is clear that, 
if there are features , that are responsible for the source dependencies, these features 
have to be present with large entropy, otherwise the source dependencies would have 
been low. Accordingly we propose a heuristic that discards the rows of 0 with the 
smallest Euklidian norm prior to the second leA step. How many rows have to be 
discarded and if this type of heuristic is applicable at all , depends of the statistical 
nature of the sources. In section 5 we show that for the test data this heuristic is 
well applicable and almost all dependencies are contained in one feature. 

4 The Two-Step algorithm 

The considerations of the previous section give rise to a Two-Step algorithm. In 
the first step the transformation 0 has to be estimated. Standard leA [1, 2, 5] is 
performed on M -dimensional patches, which are chosen with equal probability from 
all of the observed mixtures and at random positions. The positions may overlap 
but don't overlap the boundaries of the signals. 
The resulting "demixing matrix" 0 is applied to the patches of observations, gen
erating a matrix v(r) = x(r )OT, the columns of which are candidates for the input 
for the second leA. A number of M D columns that belong to rows of 0 with small 
norm are discarded as they very likely represent features , that carry dependencies 
between the sources. M D is chosen as a model parameter or it can be determined 
empirically, given the data at hand (for instance by detecting a major jump in the 

3We assume non-Gaussian distributions for u and v. 



increase of the row norm of n). For the remaining columns it is not obvious which 
one represents the most sparse and independent feature. So any of them with equal 
probability now serve as input sample for the second ICA, which estimates the 
demixing matrix W. 
When the number N of sources is large, the first ICA may fail to extract the in
dependent source features, because, according to the central limit theorem, the 
distribution of their coefficients in the mixtures may be close to a Gaussian distri
bution. In such a situation we recommend to apply the abovementioned two steps 
repeatedly. The source estimates Wx(r) are used as input for the first ICA to 
achieve a better n, which in turn allows to better estimate W. 

Figure 1: Results of standard and multidimensional ICA performed on a set of 
8 correlated passport images. Top row: source images; Second row: linearly 
mixed sources; Third row: separation results using kurtosis optimization (FastICA 
Matlab package); Bottom row: separation results using multidimensional ICA 
(For explanation see text). 

5 Numerical experiments 

We applied our method to a linear mixture of 8 passport photographs which are 
shown in Fig. 1, top row. The images were mixed (d. Fig. 1, second row) using 
a matrix whose elements were chosen randomly from a normal distribution with 
mean zero and variance one. The mixing matrix had a condition number of 80. 
The correlation coefficients of the source images were between 0.4 and 0.9 so that 
standard ICA methods failed to recover the sources: Fig. 1, 3rd row, shows the 
results of a kurtosis optimization using the FastICA Matlab package4 . 

Fig. 1, bottom row, shows the result of the Two-Step multidimensional ICA de
scribed in section 4. For better comparison images were inverted manually to appear 
positive. In the first step n was estimated using FastICA on 105 patches, 6 x 6 pix
els in size, which were taken with equal probability from random positions from all 
mixtures. The result of the first ICA is displayed in Fig. 2. The top row shows the 
row vectors of n sorted by the logarithm of their norm. The second row shows the 
features (the corresponding columns of n - 1 ) which are extracted by n. In the dia-

4http://www.cis.hut.fi/projects/ica/fastica/ 



gram below the stars indicate the logarithm of the row norm, log V'Lt!1 0%1' and 
the squares indicate the mutual information J(Ulk,U7k) between the k-th features 
in sources 1 and 7 5, calculated using a histogram estimator. It is quite promi
nent that (i) a small norm of a column vector corresponds to a strongly correlated 
feature, and (ii) there is only one feature which carries most of the dependencies 
between the sources. Thus, the first column of v was discarded. The second ICA 
was applied to any of the remaining components, chosen randomly and with equal 
probability. A comparison between Figs. 1, top and bottom rows, shows that all 
sources were successfully recovered. 

Figure 2: Result of an ICA (kurtosis optimization) performed on patches of obser
vations (cf. Fig. 1, 2nd row), 6 x 6 pixels in size. Top row: Row vectors of the 
demixing matrix O. Second row: Corresponding column vectors of 0-1 . Vectors 
are sorted by increasing norm of the row vectors; dark and bright pixels indicate 
positive and negative values. Bottom diagram: Logarithm of the norm of row 
vectors (stars) and mutual information J(Ulk' U7k) (squares) between the coefficients 
of the corresponding features in the source images 1 and 7. 

In the next experiment we examined the influence of selecting columns of v prior 
to the second ICA. In Fig. 3 we show the reconstruction error (cf. appendix A), 
that could be achieved with the second ICA when only a single column of v served 
as input. From the previous experiment we have seen, that only the first compo
nent has considerable dependencies. As expected, only the first column yields poor 
reconstruction error. Fig. 4 shows the reconstruction error vs. M D when the M D 

smallest norm rows of 0 (rsp. columns of v) are discarded. We see, that for all 
values a good reconstruction is achieved (re < 0.6). Even if no row is discarded the 
result is only slightly worse than for one or two discarded rows. The dependencies 
of the first component are "averaged" by the vast majority of components, that 
carry no dependencies, in this case. The conspicuous large variance of the error for 
larger numbers M D might be due to convergence instabilities or close to Gaussian 
distributed columns of u. In either case it gives rise to discard as few components 
as possible. To evaluate the influence of the patch size M, the Two-Step algorithm 
was applied to 9 different mixtures of the sources shown in Fig. 1, top row, and 
using patch sizes between M = 2 x 2 and M = 6 x 6. Table 1 shows the mean 
and standard deviation of the achieved reconstruction error. The mixing matrix A 
was randomly chosen from a normal distribution with mean zero and variance one. 
FastICA was used for both steps, where 5.105 sample patches were used to extract 
the optimal features and 2.5.104 samples were used to estimate W. The smallest 
row of 0 was always discarded. The algorithm shows a quite robust performance, 
and even for patch sizes of 2 x 2 pixels a fairly good separation result is achieved 

5Images no. 1 and 7 were chosen exemplarily as the two most strongly correlated sources. 
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Figure 3: Every single row of 0 used to 
generate input for the second leA. Only 
the first (smallest norm) row causes bad 
reconstruction error for the second leA 
step. 

patch size M J-lr e (Jre 

2x2 0.4361 0.0383 
3x3 0.2322 0.0433 
4x4 0.1667 0.0263 
5x5 0.1408 0.0270 
6x6 0.1270 0.0460 

Figure 4: M D rows with smallest norm 
discarded. All values of M D provide 
good reconstruction error in the second 
step. Note the slidely worse result for 
MD=O! 

Table 1: Separation result of the Two
Step algorithm performed on a set of 8 
correlated passport images (d. Fig. 1, top 
row). The table shows the average recon
struction error J-lre and its standard devi
ation (Jre calculated from 9 different mix
tures. 

(Note, for comparison, that the reconstruction error of the separation in Fig. 1, 
bottom row, was 0.2). 

6 Summary and outlook 

We extended the source separation model to multidimensional channels (image 
patches). There are two linear transformations to be considered, one operating in
side the channels (0) and one operating between the different channels (W). The 
two transformations are estimated in two adjacent leA steps. There are mainly 
two advantages, that can be taken from the first transformation: (i) By arranging 
independence among the columns of the transformed patches, the average trans
information between different channels is decreased. (ii) A suitable heuristic can 
be applied to discard those columns of the transformed patches, that carry most 
of the dependencies between different channels. A heuristic, that identifies the de
pendence carrying components by a small norm of the corresponding rows of 0 
has been introduced. It shows, that for the image data only one component carries 
most of the dependencies. Due this fact, the described method works well also when 
all components are taken into account . In future work, we are going to establish 
a Maximum Likelihood model for both transformations. We expect a performance 
gain due to the mutual improvement of the estimates of W and 0 during the it
erations. It remains to examine what the model has to be in case some rows of 0 
are discarded. In this case the transformations don't preserve the dimensionality of 
the observation patches. 

A Reconstruction error 

The reconstruction error re is a measure for the success of a source separation. 
It compares the estimated de-mixing matrix W with the inverse of the original 
mixing matrix A with respect to the indeterminacies: scalings and permutations. 
It is always nonnegative and equals zero if, and only if P = W A is a nonsingular 



permutation matrix. This is the case when for every row of P exactly one element 
is different from zero and the rows of P are orthogonal, i.e. ppT is a diagonal 
matrix. The reconstruction error is the sum of measures for both aspects 

N N N N N N 

re 2LlogL P 7j - Llog LPij + Llog L P 7j -log detppT 
i=1 j=1 i=1 j=1 i=1 j=1 

N N N N 

3 L log L P 7j - L log L pij - log det ppT . (13) 
i=1 j=1 i=1 j=1 
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