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Abstract 

Hebbian learning rules are generally formulated as static rules. Un­
der changing condition (e.g. neuromodulation, input statistics) 
most rules are sensitive to parameters. In particular, recent work 
has focused on two different formulations of spike-timing-dependent 
plasticity rules. Additive STDP [1] is remarkably versatile but 
also very fragile, whereas multiplicative STDP [2, 3] is more ro­
bust but lacks attractive features such as synaptic competition and 
rate stabilization. Here we address the problem of robustness in 
the additive STDP rule. We derive an adaptive control scheme, 
where the learning function is under fast dynamic control by post­
synaptic activity to stabilize learning under a variety of conditions. 
Such a control scheme can be implemented using known biophysical 
mechanisms of synapses. We show that this adaptive rule makes 
the addit ive STDP more robust. Finally, we give an example how 
meta plasticity of the adaptive rule can be used to guide STDP 
into different type of learning regimes. 

1 Introduction 

Hebbian learning rules are widely used to model synaptic modification shaping the 
functional connectivity of neural networks [4, 5]. To ensure competition between 
synapses and stability of learning, constraints have to be added to correlational Heb­
bian learning rules [6]. Recent experiments revealed a mode of synaptic plasticity 
that provides new possibilities and constraints for synaptic learning rules [7, 8, 9]. 
It has been found that synapses are strengthened if a presynaptic spike precedes a 
postsynaptic spike within a short (::::: 20 ms) time window, while the reverse spike 
order leads to synaptic weakening. This rule has been termed spike-t iming depen­
dent plasticity (STDP) [1] . Computational models highlighted how STDP combines 
synaptic strengthening and weakening so that learning gives rise to synaptic com­
petition in a way that neuronal firing rates are stabilized. 

Recent modeling studies have, however, demonstrated that whether an STDP type 



rule results in competition or rate stabilization depends on exact formulation of the 
weight update scheme [3, 2]. Sompolinsky and colleagues [2] introduced a distinc­
tion between additive and multiplicative weight updating in STDP. In the additive 
version of an STDP update rule studied by Abbott and coworkers [1, 10], the magni­
tude of synaptic change is independent on synaptic strength. Here, it is necessary to 
add hard weight bounds to stabilize learning. For this version of the rule (aSTDP), 
the steady-state synaptic weight distribution is bimodal. In sharp contrast to this, 
using a multiplicative STDP rule where the amount of weight increase scales in­
versely with present weight size produces neither synaptic competition nor rate 
normalization [3, 2]. In this multiplicative scenario the synaptic weight distribution 
is unimodal. Activity-dependent synaptic scaling has recently been proposed as 
a separate mechanism to ensure synaptic competition operating on a slow (days) 
time scale [3]. Experimental data as of today is not yet sufficient to determine the 
circumstances under which the STDP rule is additive or multiplicative. 

In this study we examine the stabilization properties of the additive STDP rule. In 
the first section we show that the aSTDP rule normalizes postsynaptic firing rates 
only in a limited parameter range. The critical parameter of aSTDP becomes the 
ratio (0;) between the amount of synaptic depression and potentiation. We show 
that different input statistics necessitate different 0; ratios for aSTDP to remain 
stable. This lead us to consider an adaptive version of aSTDP in order to create a 
rule that is both competitive as well as rate stabilizing under different circumstances. 

Next, we use a Fokker-Planck formalism to clarify what determines when an ad­
ditive STDP rule fails to stabilize the postsynaptic firing rate. Here we derive 
the requirement for how the potentiation to depression ratio should change with 
neuronal activity. In the last section we provide a biologically realistic implemen­
tation of the adaptive rule and perform numerical simulations to show the how 
different parameterizations of the adaptive rule can guide STDP into differentially 
rate-sensitive regimes. 

2 Additive STDP does not always stabilize learning 

First, we numerically simulated an integrate-and-fire model receiving 1000 excita­
tory and 250 inhibitory afferents. The weights of the excitatory synapses were up­
dated according to the additive STDP rule. We used the model developed by Song et 
al, 2000 [1]. The learning kernel L(T) is A+exp(T/T+) if T < 0 or -A_ exp( -T/L) 
if T > 0 where A_ / A+ denotes the amplitude of depression/potentiation respec­
tively. Following [1] we use T + = T _ = 20 ms for the time window of learning. The 
integral over the temporal window of the synaptic learning function (L) is always 
negative. Synaptic weights change according to 

dWi J ill = L(T)Spre(t + T)Spost(T)dT , Wi E[O,Wmax ] (1) 

where s(t) denotes a delta function representing a spike at time t. Correlations 
between input rates were generated by adding a common bias rate in a graded 
manner across synapses so that the first afferent is has zero while the last afferent 
has the maximal correlation, Cmax . 

We first examine how the depression/potentiation ratio (0; = LTD / LT P) [2] con­
trols the dependence of the output firing rate on the synaptic input rate, here 
referred to as the effective neuronal gain. Provided that 0; is sufficiently large, the 
STDP rule controls the postsynaptic firing rate (Fig. 1A). The stabilizing effect of 
the STDP rule is therefore equivalent to having weak a neuronal gain. 
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Figure I: A STDP controls neuronal gain. The slope of the dependence of the postsynap­
tic output rate on the presynaptic input rate is referred to as the effective neuronal gain. 
The initial firing rate is shown by the upper curve while the lower line displays the final 
postsynaptic firing rate. The gain is reduced provided that the depression/potentiation 
ratio (0: = 1.05 here) is large enough. The input is uncorrelated. B Increasing input 
correlations increases neuronal gain. When the synaptic input is strongly correlated 
the postsynaptic neuron operates in a high gain mode characterized by a larger slope 
and larger baseline rate. Input correlations were uniformly distributed between 0 and a 
maximal value, Cm a x . The maximal correlation increases in the direction of the arrow: 
0.0; 0.2 ; 0.3; 0.4; 0.5; 0.6; 0.7. The 0: ratio is 1.05. Note that for further increases in 
the presynaptic rates, postsynaptic firing can increase to over 1000 Hz. C The depres­
sion/potentiation ratio sets the neuronal gain. The 0: ratios increase in the direction of 
arrow:1.025;1.05;1.075;1.1025;1.155;1.2075. Cm a x is 0.5. 

We find that the neuronal gain is extremely sensitive to the value of 0: as well 
as to the amount of afferent input correlations. Figure IB shows that increasing 
the amount of input correlations for a given 0: value increases the overall firing 
rate and the slope of the input-output curve, thus leading to larger effective gain. 
Increasing the amount of correlations between the synaptic afferents could therefore 
be interpreted as increasing the effective neuronal gain. Note that the baseline firing 
at a presynaptic drive of 20Hz is also increased. Next, we examined how neuronal 
gain depends on the value of 0: in the STDP rule (Figure IC). The high gain and 
high rate mode induced by strong input correlations was reduced to a lower gain 
and lower rate mode by increasing 0: (see arrow in Figure IC). Note, however, that 
there is no correct 0: value as it depends on both the input statistics as well as the 
desired input/output relationship. 

3 Conditions for an adaptive additive STDP rule 

Here we address how the learning ratio, 0:, should depend on the input rate in or­
der to produce a given neuronal input-output relationship. Using this functional 
form we will be able to formulate constraints for an adaptive additive STDP rule. 
This will guide us in the derivation of a biophysical implementation of the adap­
tive control scheme. The problem in its generality is to find (i) how the learning 
ratio should depend on the postsynaptic rate and (ii) how the postsynaptic rate 
depends on the input rate and the synaptic weights. By performing self-consistent 
calculations using a Fokker-Planck formulation, the problem is reduced to finding 
conditions for how the learning ratio should depend on the input rates only. 

Let 0: denote depression/potentiation ratio 0: = LTD/LTP as before. Now we 
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Figure 2: Self consistent Fokker-Planck calculations. Conditions for zero neuronal gain. U 
A The output rate does not depend on the input rate. Zero neuronal gain. B Dependence 
of the mean synaptic weight on input rates . C W tot ex: Tpre < W >, see text. D The 
dependence of j3 = a - 1 on input rate. E,F A( w) and P( w) are functions of the synaptic 
strength and depend on the input rate .. Note that eight different input rates are used but 
only traces 1, 3, 5, 7 are shown for A(w) and pew) in which the dashed line correspond 
to the case with the lowest presynaptic rate. 

determine how the parameter fJ = 0: - 1 should scale with presynaptic rates in 
order to control the neuronal gain. The Fokker-Planck formulation permits an 
analytic calculation of the steady state distribution of synaptic weights [3]. The 
competition parameter for N excitatory afferents is given by Wtot = twrpreN < w > 
where the time window tw is defined as the probability for depression (Pd = tw/tisi) 
that a synaptic event occurs within the time window (tw < tisi ). The amount 
of potentiation and depression for the additive STDP yields in the steady-state, 
neglecting the exponential timing dependence, the following expression for the drift 
term A(w) 

A(w) = PdA-[W/Wtot - (1 - 1/0:)] (2) 

A( w) represents the net weight "force field" experienced by an individual synapse. 
Thus, A( w) determines whether a given synapse (w) will increase or decrease as 
a function of its synaptic weight. The steepness of the A( w) function determines 
the degree of synaptic competition. The w /Wtot is a competition term whereas the 
(1 - 1/0:) provides a destabilizing force. When Wmax > (1 - l/o:)Wtot the synaptic 
weight distribution is bimodal. The steady state distribution reads 

P(w) = Ke[(-w(1-1 /a) +w 2 /(2 Wt o t ))/(A _ )] (3) 

where K normalizes the P(w) distribution [3]. 

Now, equations (2-3), with appropriate definitions of the terms, constitute a self­
consistent system. Using these equations one can calculate how the parameter fJ 



should scale with the presynaptic input rate in order to produce a given postsynaptic 
firing rate. For a given presynaptic rate, equations (2-3) can be iterated in until a 
self-consistent solution is found. At that point, the postsynaptic firing rate can be 
calculated. Here, instead we impose a fixed postsynaptic output rate for a given 
input rate and search for a self-consistent solution using (3 as a free parameter. 
Performing this calculation for a range of input rates provides us with the desired 
dependency of (3 on the presynaptic firing rate. Once a solution is reached we 
also examine the resulting steady state synaptic weight distribution (P(w)) and the 
corresponding drift term A( w) as a function of the presynaptic input rate. 

The results of such a calculation are illustrated in Figure 2. The neuronal gain, 
the ratio between the postsynaptic firing rate and the input rate is set to be zero 
(Fig 2A). To normalize postsynaptic firing rates the average synaptic weight has 
to decrease in order to compensate for the increasing presynaptic firing rate. This 
can be seen in (Fig 2B). The condition for a zero neuronal gain is that the average 
synaptic weight should decrease as 1 j r pre . This makes Wtot constant as shown 
in Fig 2C. For these values, (3 has to increase with input rate as shown in Fig 
2D. Note that this curve is approximately linear. The dependence of A( w) and the 
synaptic weight distribution P( w) on different presynaptic rates is illustrated in Fig 
2E and F. As the presynaptic rates increase, the A(w) function is lowered (dashed 
line indicates the smallest presynaptic rate), thus pushing more synapses to smaller 
values since they experience a net negative "force field". This is also reflected in the 
synaptic weight distribution which is pushed to the lower boundary as the input 
rates increase. When enforcing a different neuronal gain, the dependence of the 
(3 term on the presynaptic rates remains approximately linear but with a different 
slope (not shown). 

4 Derivation of an adaptive learning rule with biophysical 
components 

The key insight from the above calculations is the observed linear dependence of (3 on 
presynaptic rates. However, when implementing an adaptive rule with biophysical 
elements it is very likely that individual components will have a non-linear depen­
dence on each other. The Fokker-Planck analysis suggests that the non-linearities 
should effectively cancel. Why should the system be linear? Another way to see 
from where the linearity requirement comes is that the (w jWtot - (3) term in expres­
sion for A(w) (valid for small (3) has to be appropriately balanced when the input 
rates increases. The linearity of (3(rpr e ) follows from Wtot being linear in r pre . 

Now, how could (3 depend on presynaptic rates? A natural solution would be to use 
postsynaptic calcium to measure the postsynaptic firing and therefore indirectly the 
presynaptic firing rate. Moreover, the asymmetry ((3) of the learning ratio could 
depend on the level of postsynaptic calcium. It is known that increased resting 
calcium levels inhibit NMDA channels and thus calcium influx due to synaptic input. 
Additionally, the calcium levels required for depression are easier to reach. Both of 
these effects in turn increase the probability of LTD induction. Incorporating these 
intermediate steps gives the following scheme: 

(3 q c p h 
+-'-+ a t-=--+ r po st +-'---+ r pr e 

This scheme introduces parameters (p and q) and a function Ut} to control for 
the linearity jnon-linearity between the variables. The global constraint from the 
Fokker-Planck is that the effective relation between (3 and r pre should be linear. A 
biophysical formulation of the above scheme is the following 
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Figure 3: Left Steady-state response with (squares) or without (circles) the adaptive 
tracking scheme. When the STDP rule is extended with an adaptive control loop, the 
output rates are normalized in the presence of correlated input. Right Fast adaptive 
tracking. Since (3 tracks changes in intracellular calcium on a rapid time-scale, every spike 
experiences a different learning ratio, 0:. Note that the adaptive scheme approximates the 
learning ratio (0: = 1.05) used in [1]. 

d(3 
T(3 - = - (3 + [Ca]q 

dt 

(4) 

(5) 

The parameter p determines how the calcium concentration scales with the post­
synaptic firing rate (delta spikes r5 above) and q controls the learning sensitivity. "( 
controls the rise of steady-state calcium with increasing postsynaptic rates (rpost). 
The time constants TCa and T(3 determine the calcium dynamics and the time course 
of the adaptive rule respectively. Note that we have not specified the neuronal 
transfer function, it. 
To ensure a linear relation between (3 and r pre it follows from the Fokker-Planck 
analysis that [it (rpre)]pq is approximately linear in r pre . The neuronal gain can 
now be independently be controlled by the parameter T Moreover , the drift term 
A( w) becomes 

(6) 

for (3 < < 1. A( w) can be written in this form since we use that Wd - A_ = 
-A+CI: = -A+( l + [TCa"(r~ost]q). The w/Wtot is a competition term whereas 
the [TCa"(r~ost]q provides a destabilizing force. Note also, that when W max > 
[TCa"(r~ost]qWtot there is a bimodal synaptic weight distribution and synaptic com­
petition is preserved. A complete stability analysis is beyond the scope of the 
present study. 
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Figure 4: Full numerical simulation of the adaptive additive STDP rule. Parameters: 
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Cmax = 0, 0.3, 0.6 

5 Numerical simulations 

Next, we examine whether the theory of adaptive normalization carryover to a 
full scale simulation of the integrate-and-fire model with the STDP rule and the 
biophysical adaptive scheme as described above. First, we studied the neuronal 
gain (cf. Figure 1) when the inputs were strongly correlated. Driving a neuron 
with increasing input rates increases the output rate significantly when there is 
no adaptive scheme (squares, Figure 3 Left) as observed previously (cf. Figure 
IB). Adding the adaptive loop normalizes the output rates (circles, Figure 3 Left). 
This simulation shows that the average postsynaptic firing rate is regulated by 
the adaptive tracking scheme. This is expected since the Fokker-Planck analysis 
is based on the steady-state synaptic weight distribution. To further gain insight 
into the operation of the adaptive loop we examined the spike-to-spike dependence 
of the tracking scheme. Figure 3 (Right) displays the evolution of the membrane 
potential (top) and the learning ratio 0: = 1 + (3 (bottom) . The adaptive rule 
tracks fast changes in firing by adjusting the learning ratio for each spike. Thus, 
the strength plasticity is different for every spike. Interestingly, the learning ratio 
(0:) fluctuates around the value 1.05 which was used in previous studies [1] . Our 
fast , spike-to-spike tracking scheme is in contrast to other homeostatic mechanisms 
operating on the time-scale of hours to days [11 , 12, 13, 14]. In our formulation , the 
learning ratio, via (3, tracks changes in intra-cellular calcium, which in turn reflects 
the instantaneous firing rate. Slower homeostatic mechanisms are unable to detect 
these rapid changes in firing statistics. Because this fast adaptive scheme depends 
on recent neuronal firing, pairing several spikes on the time-scale comparable to the 
calcium dynamics introduces non-linear summation effects. 

Neurons with this adaptive STDP control loop can detect changes in the input 
correlation while being only weakly dependent on the presynaptic firing rate . Figure 
4a and 4b show two different regimes corresponding to two different values of the 
parameter , . In the high , regime (Fig. 4a) the neuronal gain is zero. The neuronal 
gain increased when , decreased (Fig. 4b) as expected from the theory. In a 
different regime where we introduce increasing correlations between the synaptic 
inputs [1] we find that the neuronal gain is changed little with increasing input 
rates but increases substantially with increasing input correlations (Fig 4c) . Thus, 
the adaptive aSTDP rule can normalize the mean postsynaptic rate even when the 
input statistics change. With other adaptive parameters we also found learning 
regimes where the responses to input correlations were affected differentially (not 
shown). 



6 Discussion 

Synaptic learning rules have to operate under widely changes conditions such as 
different input statistics or neuromodulation. How can a learning rule dynami­
cally guide a network into functionally similar operating regime under different 
conditions? We have addressed this issue in the context of spike-timing-dependent 
plasticity (STDP) [1, 10J. We found that STDP is very sensitive to the ratio of 
synaptic strengthening to weakening, (t, and requires different values for different 
input statistics. To correct for this, we proposed an adaptive control scheme to 
adjust the plasticity rule. This adaptive mechanisms makes the learning rule more 
robust to changing input conditions while preserving its interesting properties, such 
as synaptic competition. We suggested a biophysically plausible mechanism that 
can implement the adaptive changes consistent with the requirements derived using 
the Fokker-Planck analysis . 

Our adaptive STDP rule adjusts the learning ratio on a millisecond time-scale. 
This in contrast to other, slow homeostatic controllers considered previously 
[11 , 12, 13, 14, 3J. Because the learning rule changes rapidly, it is very sensitive 
the input statistics. Furthermore, the synaptic weight changes add non-linearly 
due to the rapid self-regulation. In recent experiments similar non-linearities have 
been detected (Y. Dan, personal communication) which might have roles in mak­
ing synaptic plasticity adaptive. Finally, the new set of adaptive parameters could 
be independently controlled by meta-plasticity to bring the neuron into different 
operating regimes. 
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