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Abstract 

The information bottleneck method is an unsupervised model independent data 
organization technique. Given a joint distribution peA, B), this method con­
structs a new variable T that extracts partitions, or clusters, over the values of A 
that are informative about B. In a recent paper, we introduced a general princi­
pled framework for multivariate extensions of the information bottleneck method 
that allows us to consider multiple systems of data partitions that are inter-related. 
In this paper, we present a new family of simple agglomerative algorithms to 
construct such systems of inter-related clusters. We analyze the behavior of these 
algorithms and apply them to several real-life datasets. 

1 Introduction 

The information bottleneck (IB) method of Tishby et al [14] is an unsupervised non­
parametric data organization technique. Given a joint distribution P(A, B), this method 
constructs a new variable T that represents partitions of A which are (locally) maximizing 
the mutual information about B. In other words, the variable T induces a sufficient par­
tition, or informative features of the variable A with respect to B. The construction of T 
finds a tradeoff between the information about A that we try to minimize, J(T; A), and 
the information about B which we try to maximize, J(T ; B). This approach is particularly 
useful for co-occurrence data, such as words and documents [12], where we want to cap­
ture what information one variable (e.g., use of a word) contains about the other (e.g., the 
document). 

In a recent paper, Friedman et al. [4] introduce multivariate extension of the IB principle. 
This extension allows us to consider cases where the data partition is relevant with respect 
to several variables, or where we construct several systems of clusters simultaneously. In 
this framework, we specify the desired interactions by a pair of Bayesian networks. One 
network, Gin, represents which variables are compressed versions of the observed variables 
- each new variable compresses its parents in the network. The second network, Gout> 

defines the statistical relationship between these new variables and the observed variables 
that should be maintained. 

Similar to the original IB, in Friedman et al. we formulated the general principle as a 
tradeoff between the (multi) information each network carries. On the one hand, we want to 
minimize the information maintained by G in and on the other to maximize the information 
maintained by Gout. We also provide a characterization of stationary points in this tradeoff 
as a set of self-consistent equations. Moreover, we prove that iterations of these equations 
converges to a (local) optimum. Then, we describe a deterministic annealing procedure 



that constructs a solution by tracking the bifurcation of clusters as it traverses the tradeoff 
curve, similar to the original IB method. 

In this paper, we consider an alternative approach to solving multivariate IB problems 
which is motivated by the success of the agglomerative IB of Slonim and Tishby [11]. As 
shown there, a bottom-up greedy agglomeration is a simple heuristic procedure that can 
yield good solutions to the original IB problem. Here we extend this idea in the context of 
multivariate IB problems. We start by analyzing the cost of agglomeration steps within this 
framework. This both elucidates the criteria that guides greedy agglomeration and provides 
for efficient local evaluation rules for agglomeration steps. This construction results with 
a novel family of information theoretic agglomerative clustering algorithms, that can be 
specified using the graphs Gin and G out. We demonstrate the performance of some of 
these algorithms for document and word clustering and gene expression analysis. 

2 Multivariate Information Bottleneck 

A Bayesian network structure G is a DAG that specifies interactions among variables [8]. 
A distribution P is consistent with G (denoted P F G), if P(Xl , ... , X n) = I1 P(Xi I 
Pa<fJ, where Pa<fi are the parents of X i in G. Our main interest is in the information 
that the variables Xl " '" X n contain about each other. A quantity that captures this is the 
multi-information given by 

where V(Pllq) is the familiar Kullback-Liebler divergence [2]. 

Proposition 2.1 [4] Let G be a DAG over {Xl , ... , X n }, and let P F G be a distribution. 

Then, I G = I(Xl' ... , X n ) = L i I(Xi ; Pa<fi ). 

That is, the multi-information is the sum of local mutual information terms between each 
variable and its parents (denoted I G). 

Friedman et al. define the multivariate IE problem as follows. Suppose we are given a set 
of observed variables, X = {Xl , ... , X n} and their joint distribution P (X l , ... , X n ). We 
want to "construct" new variables T , where the relations between the observed variables 
and these new compression variables are specified using a DAG Gin over X U T where 
the variables in T are leafs. Thus, each Tj is a stochastic function of a set of variables 
U j = Pa~;in ~ X. Once these are set, we have a joint distribution over the combined set 

of variables: P(X, T) = P(X) ITj P(Tj I U j ). 

The "relevant" information that we want to preserve is specified by another DAG, Gout . 
This graph specifies, for each Tj which variables it predicts. These are simply its chil­
dren in G out . More precisely, we want to predict each Xi (or T j ) by V X i = Pa~;"t 
(resp. V T; = Pa~;out ), its parents in G out. Thus, we think ofIGout as a measure of how 
much information the variables in T maintain about their target variables. 

The Lagrangian can then be defined as 

(1) 

with a tradeoff parameter (Lagrange multiplier) (3. 1 The variation is done subject to 
the normalization constraints on the partition distributions. Thus, we balance between the 
information T loses about X in G in and the information it preserves in G out. 

Friedman et al. [4] show that stationary points of this Lagrangian satisfy a set of self­
consistent equations. Moreover, they show that iterating these equations converges to a 

INotice that under this formul ation we would like to maximize £. An equivalent definition [4] 
would be to minimize £ = 'LG in - (J . 'LGO"t . 



stationary point of the tradeoff. Then, extending the procedure of Tishby et al [14], they 
propose a procedure that searches for a solution of the IB equations using a 'deterministic 
annealing' approach [9]. This is a top-down hierarchical algorithm that starts from a single 
cluster for each Tj at j3 -+ 0, and then undergoes a cascade of cluster splits as j3 is being 
"cooled". These determines "soft" trees of clusters (one for each T j ) that describe solutions 
at different tradeoff values of j3 . 

3 The Agglomerative Procedure 

For the original IB problem, Slonim and Tishby [11] introduced a simpler procedure that 
performs greedy bottom-up merging of values. Several successful applications of this algo­
rithm are already presented for a variety of real-world problems [10, 12, 13, 15]. The main 
focus of the current work is in extending this approach for the multivariate IB problem. As 
we will show, this will lead to further insights about the method, and also provide a rather 
simple and intuitive clustering procedures. 

We consider procedures that start with a set of clusters for each T j (usually the most 
fine-grained solution we can consider where T j = U j ) and then iteratively reduce the 
cardinality of one of the Tj ' s by merging two values t~ and tj of T j into a single value lj. 
To formalize this notion we must define the membership probability of a new cluster lj, 
resulting from merging {t~, tj} '* lj in T j . This is done rather naturally by 

(2) 

In other words, we view the event l j as the union of the events t~ and tj. 
Given the membership probabilities, at each step we can also draw the connection be­

tween Tj and the other variables. This is done using the following proposition which is 
based on the conditional independence assumptions given in Gin. 

Proposition 3.1 Let Y , Z C X U T \ {Tj} then, 

(3) 

h II { } { p(t~ I Z) p(t j IZ) }. h d· ·b· d·· d 
were Z = 1f1 ,Z, 1fr ,z = p(t; IZ)' p(t; IZ) IS t e merger 1Str1 uttOn can ltzone on 

z. 
In particular, this proposition allows us to evaluate all the predictions defined in G out and 
all the informations terms in £ that involve T j . 

The crucial question in an agglomerative process is of course which pair to merge at each 
step. We know that the merger "cost" in our terms is exactly the difference in the values 
of £ , before and after the merger. Let T}ef and T/ft denote the random variables that 
correspond to T j , before and after the merger, respectively. Thus, the values of £ before 

and after the merger are calculated based on Trf and Ttt. The merger cost is then simply 
given by, 

(4) 

The greedy procedure evaluates all the potential mergers (for all T j ) and then applies the 
best one (i.e., the one that minimizes 6.£( t~ , t j ). This is repeated until all the variables in 
T degenerate into trivial clusters. The resulting set of trees describes a range of solutions 
at different resolutions. 

This agglomerative approach is different in several important aspects from the determin­
istic annealing approach described above. In that approach, by "cooling" (i.e., increasing) 
j3 , we move along a tradeoff curve from the trivial - single cluster - solution toward solu­
tions with higher resolutions that preserve more information in G out. In contrast, in the 



agglomerative approach we progress in the opposite direction. We start with a high res­
olution clustering and as the merging process continues we move toward more and more 
compact solutions. During this process (3 is kept constant and the driving force is the re­
duction in the cardinality of the T/s. Therefore, we are able to look for good solutions in 
different resolutions for ajixed tradeoff parameter (3 . Since the merging does not attempt 
directly to maintain the (stationary) self-consistent "soft" membership probabilities, we do 
not expect the self-consistent equations to hold at solutions found by the agglomerative 
procedure. On the other hand, the agglomerative process is much simpler to implement 
and fully deterministic. As we will show, it provides sufficiently good solutions for the IB 
problem in many situations. 

4 Local Merging Criteria 

In the procedure we outline above, at every step there are O(ITj 12) possible mergers of 
values of T j (for every j). A direct calculation of the costs of all these potential mergers 
is typically infeasible. However, it turns out that one may calculate t:...c (t; , tj) while ex­
amining only the probability distributions that involve t; and tj directly. Generalizing the 
results of [11] for the original IB, we now develop a closed-form formula for t:...c(t;, tj) . 

To describe this result we need the following definition. The Jensen-Shannon ( J S) diver­
gence [7, 3] between two probabilities PI , P2 is given by 

where II = {7rl ' 7r2} is a normalized probability and p = 7rlPl + 7r2P 2 . The J S diver­
gence is equal zero if and only if both its arguments are identical. It is upper bounded 
and symmetric, though it is not a metric. One interpretation of the J S -divergence relates 
it to the (logarithmic) measure of the likelihood that the two sample distributions origi­
nate by the most likely common source, denoted by p. In addition, we need the notation 
V-X~ = V X i - {Tj} (similarly for V T!). 
Theorem 4.1 Let t; , tj E Tj be two clusters. Then, t:...c( t; , tj) = p(tj) . d(t;, tj) where 

d(t; , tj) L Ep(' lt;) [JSrrv _ ; (P(Xi 1 t;, V-X~ ),p(Xi 1 tj, V -X{))] 
i: T; EVXi Xi 

+ L Ep(' lt; ) [JSrrv _; (p(Te 1 t;, V Tj) ,p(Te 1 tj , VT! ))] 
e:T;EvT£ T£ 

+ JSrr(p(VT; 1 t;) ,p(VT; 1 tj)) - (3-1. JSrr(p(Uj 1 t;) ,p(Uj 1 tj)) 

A detailed proof of this theorem will be given elsewhere. Thus, the merger cost is a mul­
tiplication of the weight of the merger components (P(tj)) with their "distance" given by 
d(t; , tj). Notice that due to the properties of the JS-divergence, this distance is symmet­
ric. In addition, the last term in this distance has the opposite sign to the first three terms. 
Thus, the distance between two clusters is a tradeoff between these two factors. Roughly 
speaking, we may say that the distance is minimized for pairs that give similar predictions 
about the variables connected with Tj in Gout and have different predictions (minimum 
overlap) about the variables connected with Tj in Gin. We notice also the analogy between 
this result and the main theorem in [4]. In [4] the optimization is governed by the KL 
divergences between data and cluster's centroids, or by the likelihood that the data was 
generated by the centroid distribution. Here the optimization is controlled through the J S 
divergences, i.e. the likelihood that the two clusters have a common source. 

Next, we notice that after applying a merger, only a small portion of the other mergers 
costs change. The following proposition characterizes these costs. 
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Figure 1: The source and target networks and the corresponding Lagrangian for the three 
examples we consider. 

Proposition4.2 The merger {t; , tj} :::} tj in Tj can change the cost 6..c(t~ , tc ) only if 
p(tj , te) > 0 and Tj , Te co-appear in some information term in r Gout • 

This proposition is particularly useful, when we consider "hard" clustering where T j is 
a (deterministic) function ofU j . In this case, p(tj,te) is often zero (especially when Tj 
and Te compressing similar variables, i.e., U j n U e =I- 0). In particular, after the merger 
{t;, tj} :::} tj, we do not have to reevaluate merger costs of other values of Tj , except for 
mergers of tj with each of these values. 

In the case of hard clustering we also find thatI(Tj ; U j ) = H(Tj ) (where H(P) is Shan­
non's entropy). Roughly speaking, we may say that H(P) is decreasing for less balanced 
probability distributions p. Therefore, increasing (3-1 will result with a tendency to look 
for less balanced "hard" partitions and vice verse. This is reflected by the fact that the last 
term in d( t; , tj) is then simplified through J Sn (p(U j I t;), p(U j I tj)) = H (II) . 

5 Examples 

We now briefly consider three examples of the general methodology. For brevity we focus 
on the simpler case of hard clustering. We first consider the example shown in figure I(a). 
This choice of graphs results in the original IB problem. The merger cost in this case is 
given by, 

6..c(tl, n = p(t) . (JSn(p(B I tl),p(B I n) - (3-1 H(II)) . (5) 

Note that for (3 -1 -+ 0 we get exactly the algorithm presented in [11] . 
One simple extension of the original IB is the parallel bottleneck [4]. In this case we 

introduce two variables T1 and T2 as in Figure I(b), both of them are functions of A. 
Similarly to the original IB, Gout specifies that T1 and T2 should predict B. We can think 
of this requirement as an attempt to decompose the information A contains about B into 
two "orthogonal" components. In this case, the merger cost for T1 is given by, 

6..c(ti, tD = p(t1) . (Ep(.lld[JSn T2 (P(B I ti,T2),p(B I tLT2))]- (3- 1 H(II)) . (6) 

Finally, we consider the symmetric bottleneck [4, 12]. In this case, we want to compress 
A into T A and B into T B so that T A extracts the information A contains about B, and at the 
same time TB extracts the information B contains about A. The DAG G in of figure I(c) 
captures the form of the compression. The choice of G out is less obvious and several alter­
natives are described in [4]. Here, we concentrate only in one option, shown in figure I(c). 
In this case we attempt to make each ofTA and TB sufficient to separate A from B. Thus, 
on one hand we attempt to compress, and on the other hand we attempt to make T A and T B 

as informative about each other as possible. The merger cost in T A is given by 

6..c(t~, tA) = P(tA) . JSn(p(TB I t~) , p(TB ItA)) - ((3-1 - l)H(II)), (7) 



while for merging in TB we will get an analogous expression. 

6 Applications 

We examine a few applications of the examples presented above. As one data set we 
used a subset ofthe 20 newsgroups corpus [6] where we randomly choose 2000 documents 
evenly distributed among the 4 science discussion groups (sci. crypt, sci. electronics, sci.med 
and sci.space) .2 Our pre-processing included ignoring file headers (and the subject lines), 
lowering upper case and ignoring words that contained non ' a .. z' characters. Given this 
document set we can evaluate the joint probability p(W, D), which is the probability that a 
random word position is equal to w E Wand at the same time the document is dE D . We 
sort all words by their contribution to I(W; D) and used only the 2000 'most informative' 
ones, ending up with a joint probability with I W I = ID I = 2000. 

We first used the original IB to cluster W , while trying to preserve the information about 
D. This was already done in [12] with (3-1 = 0, but in this new experiment we took 
(3-1 = 0.15. Recall that increasing (3-1 results in a tendency for finding less balanced clus­
ters. Indeed, while for (3 - 1 = 0 we got relatively balanced word clusters (high H(Tw )), 
for (3- 1 = 0.15 the probability p(Tw) is much less smooth. For 50 word clusters, one 
cluster contained almost half of the words, while the other clusters were typically much 
smaller. Since the algorithm also tries to maximize I(Tw; D), the words merged into the 
big cluster are usually the less informative words about D. Thus, a word must be highly in­
formative to stay out of this cluster. In this sense, increasing (3-1 is equivalent for inducing 
a "noise filter", that leave only the most informative features in specific clusters. In figure 2 
we present p( D I tw) for several clusters tw E Tw. Clearly, words that passed the "filter" 
form much more informative clusters about the real structure of D. A more formal demon­
stration of this effect is given in the right panel of figure 2. For a given compression level 
(i.e. a given I(Tw; W)), we see that taking (3-1 = 0.15 preserve much more information 
aboutD. 

While an exact implementation of the symmetric IB will require alternating mergers in 
Tw and TD, an approximated approach require only two steps. First we find Tw. Second, 
we project each d E D into the low dimensional space defined by Tw , and use this more 
robust representation to extract document clusters TD. Approximately, we are trying to 
find Tw and TD that will maximize I(Tw; TD)' This two-phase IB algorithm was shown 
in [12] to be significantly superior to six other document clustering methods, when the 
performance are measured by the correlation of the obtained document clusters with the 
real newsgroup categories. Here we use the same procedure, but for finding Tw we take 
(3-1 = 0.15 (instead of zero). Using the above intuition we predict this will induce a 
cleaner representation for the document set. Indeed, the averaged correlation of TD (for 
lTD I = 4) with the original categories was 0.65, while for (3-1 = 0 it was 0.58 (the average 
is taken over different number of word clusters, ITw I = 10, 11...50). Similar results were 
obtained for all the 9 other subsets of the 20 newsgroups corpus described in [12]. 

As a second data set we used the gene expression measurements of rv 6800 genes in 
72 samples of Leukemia [5]. The sample annotations included type of leukemia (ALL vs. 
AML), type of cells, source of sample, gender and donating hospital. We removed genes 
that were not expressed in the data and normalized the measurements of each sample to 
get a joint probability P(G, A) over genes and samples (with uniform prior on samples). 
We sorted all genes by their contribution to I(G; A) and chose the 500 most informative 
ones, which capture 47% of the original information, ending up with a joint probability 
with IAI = 72 and IGI = 500. 

We first used an exact implementation of the symmetric IB with alternating mergers be-

2We used the same subset already used in [12]. 
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Figure 2: P(D I tw) for 5 word clusters, tw E Tw. Documents 1 - 500 belong to sci. crypt 
category, 501 - 1000 to sci. electronics, 1001 - 1500 to sci.med and 1501 - 2000 to sci. space. 
In the title of each panel we see the 5 most frequent words in the cluster. The 'big' cluster (upper 
left panel) is clearly less informative about the structure of D. In the lower right panel we see the 
two information curves. Given some compression level, for (3- 1 = 0.15 we preserve much more 
information about D than for (3-1 = O. 

tween both clustering hierarchies (and /3 -1 = 1). For ITA I = 2 we found an almost perfect 
correlation with the ALL vs. AML annotations (with only 4 exceptions). For ITA I = 8 and 
ITGI = 10 we found again high correlation between our sample clusters and the different 
sample annotations. For example, one cluster contained 10 samples that were all annotated 
as ALL type, taken from male patients in the same hospital. Almost all of these 10 were also 
annotated as T-cells, taken from bone marrow. Looking at p(TA I TG) we see that given the 
third genes cluster (which contained 17 genes) the probability of the above specific samples 
cluster is especially high. Further such analysis might yield additional insights about the 
structure of this data and will be presented elsewhere. 

Finally, to demonstrate the performance of the parallel IB we apply it to the same data. 
Using the parallel IB algorithm (with /3-1 = 0) we clustered the arrays A into two clus­
tering hierarchies, T1 and T2 , that try together to capture the information about G. For 
ITj I = 4 we find that each I(Tj; G) preserve about 15% of the original information. How­
ever, taking ITj I = 2 (i.e. again, just 4 clusters) we see that the combination of the hi­
erarchies, I(T1, T2 ; G), preserve 21 % of the original information. We then compared the 
two partitions we found against sample annotations. We found that the first hierarchy with 
IT11 = 2 almost perfectly match the split between B-cells and T-cells (among the 47 sam­
ples for which we had this annotation). The second hierarchy, with IT21 = 2 separates a 
cluster of 18 samples, almost all of which are ALL samples taken from the bone marrow of 
patients from the same hospital. These results demonstrate the ability of the algorithm to 
extract in parallel different meaningful independent partitions of the data. 

7 Discussion 

The analysis presented by this work enables to implement a family of novel agglomerative 
clustering algorithms. All of these algorithms are motivated by one variational framework 
given by the multivariate IB method. Unlike most other clustering techniques, this is a 
principled model independent approach, which aims directly at the extraction of informa­
tive structures about given observed variables. It is thus very different from maximum-



likelihood estimation of some mixture model and relies on fundamental information theo­
retic notions, similar to rate distortion theory and channel coding. In fact the multivariate 
IB can be considered as a multivariate coding result. The fundamental tradeoff between the 
compressed multi-information rGin and the preserved multi-information r G ou, provides a 
generalized coding limiting function, similar to the information curve in the original IB 
and to the rate distortion function in lossy compression. Despite the only local-optimality 
of the resulting solutions this information theoretic quantity - the fraction of the multi­
information that is extracted by the clusters - provides an objective figure of merit for the 
obtained clustering schemes. 

The suggested approach of this paper has several practical advantages over the 'deter­
ministic annealing' algorithms suggested in [4], as it is simpler, fully deterministic and 
non-parametric. There is no need to identify cluster splits which is usually rather tricky. 
Though agglomeration procedures do not scale linearly with the sample size as top down 
methods do, there exist several heuristics to improve the complexity of these algorithms 
(e.g. [1]). 

While a typical initialization of an agglomerative procedure induces "hard" clustering 
solutions, all of the above analysis holds for "soft" clustering as well. Moreover, as already 
noted in [11], the obtained "hard" partitions can be used as a platform to find also "soft" 
solutions through a process of "reverse annealing". This raises the possibility for using an 
agglomerative procedure over "soft" clustering solutions, which we leave for future work. 

We could describe here only a few relatively simple examples. These examples show 
promising results on non trivial real life data. Moreover, other choices of Gin and Gout 

can yield additional novel algorithms with applications over a variety of data types. 
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