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Abstract 
Source separation, or computational auditory scene analysis , attempts to extract 
individual acoustic objects from input which contains a mixture of sounds from 
different sources, altered by the acoustic environment. Unmixing algorithms 
such as lCA and its extensions recover sources by reweighting multiple obser­
vation sequences, and thus cannot operate when only a single observation signal 
is available. I present a technique called refiltering which recovers sources by 
a nonstationary reweighting ("masking") of frequency sub-bands from a single 
recording, and argue for the application of statistical algorithms to learning this 
masking function . I present results of a simple factorial HMM system which 
learns on recordings of single speakers and can then separate mixtures using only 
one observation signal by computing the masking function and then refiltering. 

1 Learning from data in computational auditory scene analysis 

Imagine listening to many pianos being played simultaneously. If each pianist were striking 
keys randomly it would be very difficult to tell which note came from which piano. But 
if each were playing a coherent song, separation would be much easier because of the 
structure of music. Now imagine teaching a computer to do the separation by showing it 
many musical scores as "training data". Typical auditory perceptual input contains a mix­
ture of sounds from different sources, altered by the acoustic environment. Any biological 
or artificial hearing system must extract individual acoustic objects or streams in order 
to do successful localization, denoising and recognition. Bregman [1] called this process 
auditory scene analysis in analogy to vision. Source separation, or computational auditory 
scene analysis (CASA) is the practical realization of this problem via computer analysis 
of microphone recordings and is very similar to the musical task described above. It has 
been investigated by research groups with different emphases. The CASA community have 
focused on both multiple and single microphone source separation problems under highly 
realistic acoustic conditions, but have used almost exclusively hand designed systems 
which include substantial knowledge of the human auditory system and its psychophysical 
characteristics (e.g. [2,3]). Unfortunately, it is difficult to incorporate large amounts of 
detailed statistical knowledge about the problem into such an approach. On the other 
hand, machine learning researchers, especially those working on independent components 
analysis (lCA) and related algorithms, have focused on the case of multiple microphones 
in simplified mixing environments and have used powerful "blind" statistical techniques. 
These "unmixing" algorithms (even those which attempt to recover more sources than 
signals) cannot operate on single recordings. Furthermore, since they often depend only on 
the joint amplitude histogram of the observations they can be very sensitive to the details of 
filtering and reverberation in the environment. The goal of this paper is to bring together the 
robust representations of CAS A and methods which learn from data to solve a restricted 
version of the source separation problem - isolating acoustic objects from only a single 
microphone recording. 



2 Refiltering vs. unmixing 

Unmixing algorithms reweight multiple simultaneous recordings mk (t) (generically called 
microphones) to form a new source object s(t): 

s(t) = D:lml(t)+D:2m2(t)+ ... +D:KmK(t) (1) 
'-v-" '-v-'" '-v-'" ............... 

estimated source mic 1 mic 2 mic K 

The unmixing coefficients D:i are constant over time and are chosen to optimize some 
property of the set of recovered sources, which often translates into a kurtosis measure on 
the joint amplitude histogram of the microphones . The intuition is that unmixing algorithms 
are finding spikes (or dents for low kurtosis sources) in the marginal amplitude histogram. 
The time ordering of the datapoints is often irrelevant. 

Unmixing depends on a fine timescale, sample-by-sample comparison of several observa­
tion signals. Humans, on the other hand, cannot hear histogram spikes l and perform well on 
many monaural separation tasks. We are doing structural analysis, or a kind of perceptual 
grouping on the incoming sound. But what is being grouped? There is substantial evidence 
that the energy across time in different frequency bands can carry relatively independent 
information. This suggests that the appropriate subparts of an audio signal may be narrow 
frequency bands over short times. To generate these parts, one can perform multi band 
analysis - break the original signal y(t) into many subband signals bi(t) each filtered to 
contain only energy from a small portion of the spectrum. The results of such an analysis 
are often displayed as a spectrogram which shows energy (using colour or grayscale) as a 
function of time (ordinate) and frequency (abscissa). (For example one is shown on the top 
left of figure 5.) In the musical analogy, a spectrogram is like a musical score in which the 
colour or grey level of the each note tells you how hard to hit the piano key. 

The basic idea of refiltering is to construct new sources by selectively reweighting the 
multiband signals bi(t). Crucially, however, the mixing coefficients are no longer constant 
over time; they are now called masking signals. Given a set of masking signals, denoted 
D:i(t), a source s(t) can be recovered by modulating the corresponding subband signals 
from the original input and summing: 

s(t) 
'-v-" 

estimated source 

mask 1 ,-.-.. 
D:l(t) b1(t) 
~ 

sub-band 1 

mask 2 ,-.-.. 
+ D:2(t) b2(t) 
~ 

sub-band 2 

maskK ,.--.... 
+ ... + D:K(t) bK(t) 

'-v-" 
sub-band K 

(2) 

The D:i(t) are gain knobs on each subband that we can twist over time to bring bands 
in and out of the source as needed. This performs masking on the original spectrogram. 
(An equivalent operation can be performed in the frequency domain.2) This approach, 
illustrated in figure 1, forms the basis of many CASA approaches (e.g. [2,3,4]). 

For any specific choice of masking signals D:i(t), refiltering attempts to isolate a single 
source from the input signal and suppress all other sources and background noises. Differ­
ent sources can be isolated by choosing different masking signals. Henceforth, I will make 
a strong simplifying assumption that D:i(t) are binary and constant over a timescale T of 
roughly 30ms. This is physically unrealistic, because the energy in each small region of 
time-frequency never comes entirely from a single source. However in practice, for small 
numbers of sources, this approximation works quite well (figure 3). (Think of ignoring col­
lisions by assuming separate piano players do not often hit the same note at the same time.) 

lTry randomJy permuting the time order of samples in a stereo mixture containing several sources 
and see if you still hear distinct streams when you play it back. 

2Make a conventional spectrogram of the original signal y(t) and modulate the magnitude of 
each short time DFT while preserving its phase: SW(T) = F- 1 {D:wIIF{yW(r)}IILF{yW(r)}} 
where sW(r) and yW(r) are the wth windows (blocks) of the recovered and original signals, oi is 
the masking signal for subband i in window w, and F[·] is the DFf. 



Figure 1: The refiltering approach to one microphone source separation. Multiband analysis of 
the original signal y(t) gives sub-band signals bi(t) which are modulated by masking signals ai(t) 
(binary or real valued between 0 and 1) and recombined to give the estimated source or object s(t). 

Refiltering can also be thought of as a highly nonstationary Wiener filter in which both the 
signal and noise spectra are re-estimated at a rate l/T; the binary assumption is equivalent 
to assuming that over a timescale T the signal and noise spectra are nonoverlapping. 

It is a fortunate empirical fact that refiltering, even with binary masking signals, can cleanly 
separate sources from a single mixed recording. This can be demonstrated by taking several 
isolated sources or noises and mixing them in a controlled way. Since the original compo­
nents are known, an "optimal" set of masking signals can be computed. For example, we 
might set 0i ( t) equal to the ratio of energy from one source in band i around times t ± T to 
the sum of energies from all sources in the same band at that time (as recommended by the 
Wiener filter) or to a binary version which thresholds this ratio. Constructing masks in this 
way is also useful for generating labeled training data, as discussed below. 

3 Multiband grouping as a statistical pattern recognition problem 

Since one-microphone source separation using refiltering is possible if the masking signals 
are well chosen, the essential problem becomes: how can the Oi(t) be computed automat­
ically from a single mixed recording? The goal is to group or "tag" together regions of 
the spectrogram that belong to the same auditory object. Fortunately, in audition (as in 
vision), natural signals-especially speech---exhibit a lot of regularity in the way energy 
is distributed across the time-frequency plane. Grouping cues based on these regularities 
have been studied for many years by psychophysicists and are hand built into many CASA 
systems. Cues are based on the idea of suspicious coincidences: roughly, "things that move 
together likely belong together". Thus, frequencies which exhibit common onsets, offsets, 
or upward/downward sweeps are more likely to be grouped into the same stream (figure 2). 
Also, many real world sounds have harmonic spectra; so frequencies which lie exactly on 
a harmonic "stack" are often perceptually grouped together. (Musically, piano players do 
not hit keys randomly, but instead use chords and repeated melodies.) 

Harmonic 
stacking. 

Common 
onset. 

Frequency 
co-modulation. 

Figure 2: Examples of three common group­
ing cues for energy which often comes from 
a single source. (left) Frequencies which lie 
exactly on harmonic multiples of a single base 
frequency. (middle) Frequencies which sud­
denly increase or decrease their energy to­
gether. (right) Energy which which moves up 
or down in frequency at the same time. 

There are several ways that statistical pattern recognition might be applied to take advan­
tage of these cues. Methods may be roughly grouped into unsupervised ones, which learn 
models of isolated sources and then try to explain mixed input as being caused by the 
interaction of individual source models; and supervised methods, which explicitly model 
grouping in mixed acoustic input but require labeled data consisting of mixed input as well 



as masking signals. Luckily it is very easy to generate such data by mixing isolated sources 
in a controlled way, although the subsequent supervised learning can difficult.3 

Figure 3: Each point represents the energy from one source versus 
another in a narrow frequency band over a 32ms window. The plot 
shows all frequencies over a 2 second period from a speech mixture. 
Typically when one source has large energy the other does not. The 
binary assumption on the masking signals O!i(t) is equivalent to pro­
jecting the points shown onto either the horizontal or vertical axis. 

4 Results using factorial-max HMMs 

Here, I will describe one (purely unsupervised) method I have pursued for automatically 
generating masking signals from a single microphone. The approach first trains speaker 
dependent hidden Markov models (HMMs) on isolated data from single talkers. These 
pre-trained models are then combined in a particular way to build a separation system. 

First, for each speaker, a simple HMM is fit using patches of narrowband spectrograms as 
the pattern vectors.4 The emission densities model the typical spectral patterns produced by 
each talker, while the transition probabilities encourage spectral continuity. HMM training 
was initialized by first training a mixture of Gaussians on each speaker's data (with a single 
shared covariance matrix) independent of time order. Each mixture had 8192 components 
of dimension 1026 = 513 x 2; thus each HMM had 8192 states. To avoid overfitting, 
the transition matrices were regularlized after training so that each transition (even those 
unobserved in the training set) had a small finite probability. 

Next, to separate a new single recording which is a mixture of known speakers, these pre­
trained models are combined into afactorial hidden Markov model (FHMM) architecture 
[5]. A FHMM consists of two or more underlying Markov chains (the hidden states) which 
evolve independently. The observation Yt at any time depends on the states of all the chains. 
A simple way to model this dependence is to have each chain c independently propose an 
output yC and then combine them to generate the observation according to some rule Yt = 
Q(yi, yl, ... ,yD· Below, I use a model with only two chains, whose states are denoted 
Xt and Zt. At each time, one chain proposes an output vector ax, and the other proposes 
hz,. The key part of the model is the function Q: observations are generated by taking the 
elementwise maximum of the proposals and adding noise. This maximum operation reflects 
the observation that the log magnitude spectrogram of a mixture of sources is very nearly 
the elementwise maximum of the individual spectrograms. The full generative model for 
this "factorial-max HMM" can be written simply as: 

p(Xt = jlXt-l = i) = Tij 

p(Zt = jlZt-l = i) = U ij 

p(Yt IXt, Zt) = N(max[axt! hz,], R) 

(3) 

(4) 
(5) 

3Recall that refiltering can only isolate one auditory stream at a time from the scene (we are always 
separating "a source" from "the background"). This makes learning the masking signals an unusual 
problem because for any input (spectrogram) there are as many correct answers as objects in the 
scene. Such a highly multimodal distribution on outputs given inputs means that the mapping from 
auditory input to masking signals cannot be learned using backprop or other single-valued function 
approximators which take the average of the possible maskings present in the training data. 

4The observations are created by concatenating the values of 2 adjacent columns of the log magni­
tude periodogram into a single vector. The original waveforms were sampled at 16kHz. Periodogram 
windows of 32ms at a frame rate of 16ms were analyzed using a Hamming tapered OFT zero padded 
to length 1024. This gave 513 frequency samples from OC to Nyquist. Average signal energy was 
normalized across the most recent 8 frames before computing each OFT. 



where N(f.-L, 1;) denotes a Gaussian distribution with mean f.-L and covariance 1; and max[·] 
is the elementwise maximum operation on two vectors. (There are also densities on the 
initial states Xl and zd This model is illustrated in figure 4. It ignores two aspects of the 
spectrogram data: first, Gaussian noise is used although the observations are nonnegative; 
second, the probability factor requiring the non-maximum output proposal to be less than 
the maximum proposal is missing. However, in practice these approximations are not too 
severe and making them allows an efficient inference procedure (see below) . 

••• 

••• 

Figure 4: Factorial HMM with 
max output semantics. Two Markov 
chains Xt and Zt evolve indepen­
dently. Observations Yt are the 
elementwise max of the individ­
ual emission vectors max[ax " b z,] 

plus Gaussian noise. 

In the experiment presented below, each chain represents a speaker dependent HMM (one 
male and one female). The emission and transition probabilities from each speaker's pre­
trained HMM were used as the parameters for the combined FHMM. (The output noise 
covariance R is shared between the two HMMs.) 

Given an input waveform, the observation sequence Y = YI, ... ,YT is created from 
the spectrogram as before.4 Separation is done by first inferring a joint underlying state 
sequence {Xt, Zt} of the two Markov chains in the model and then using the difference of 
their individual output predictions to compute a binary masking signal: 

Clt(i) = 1 if �a�~�,� (i) > hz, (i) and 0 if �a�~�,� (i) �~� hz, (i) (6) 

Ideally, the inferred state sequences {Xt, Zt} should be the mode of the posterior distri­
bution p(Xt, ztIY). Since the hidden chains share a single visible output variable, naive 
inference in the FHMM graphical model yields an intractable amount of work exponential 
in the size of the state space of each submodel. However, because all of the observations 
are nonnegative and the max operation is used to combine output proposals, there is an 
efficient trick for computing the best joint state trajectory. At each time, we can upper 
bound the log-probability of generating the observation vector if one chain is in state i, no 
matter what state the other chain is in. Computing these bounds for each state setting of 
each chain requires only a linear amount of work in the size of the state spaces. With these 
bounds in hand, each time we evaluate the probability of a specific pair of states we can 
eliminate from consideration all state settings of either chain whose bounds are worse than 
the achieved probability. If pairs of states are evaluated in a sensible heuristic order (for 
example by ranking the bounds) this results in practice in almost all possible configurations 
being quickly eliminated. (This trick turns out to be equivalent to Clj3 search in game trees.) 

The training data for the model consists only of spectrograms of isolated examples of each 
speaker but inference can be done on test data which is a spectrogram of a single mixture of 
known speakers. The results of separating a simple two speaker mixture are shown below. 
The test utterance was formed by linearly mixing two out-of-sample utterances (one male 
and one female) from the same speakers as the models were trained on. Figure 5 shows 
the original mixed spectrogram (top left) as well as the sequence of outputs �a�~�,� (bottom 
left) and hz, (bottom right) from each chain. The chain with the maximum output in any 
sub-band at any time has Cli(t) = 1, otherwise Cli(t) = 0 (top right). The FHMM system 
achieves good separation from only a single microphone (see figure 6). 






