
Discovering Hidden Variables:
A Structure-Based Approach

Gal Elidan Noam Lotner Nir Friedman
Hebrew University

{galel,noaml,nir}@cs.huji.ac.il

Abstract

Daphne Koller
Stanford University

koller@cs.stanford.edu

A serious problem in learning probabilistic models is the presence of hid­
den variables. These variables are not observed, yet interact with several
of the observed variables. As such, they induce seemingly complex de­
pendencies among the latter. In recent years, much attention has been
devoted to the development of algorithms for learning parameters, and
in some cases structure, in the presence of hidden variables. In this pa­
per, we address the related problem of detecting hidden variables that
interact with the observed variables. This problem is of interest both for
improving our understanding of the domain and as a preliminary step that
guides the learning procedure towards promising models. A very natural
approach is to search for "structural signatures" of hidden variables -
substructures in the learned network that tend to suggest the presence of
a hidden variable. We make this basic idea concrete, and show how to
integrate it with structure-search algorithms. We evaluate this method on
several synthetic and real-life datasets, and show that it performs surpris­
ingly well.

1 Introduction

In the last decade there has been a great deal of research focused on the problem of learning
Bayesian networks (BNs) from data (e.g., [7]). An important issue is the existence of
hidden variables that are never observed, yet interact with observed variables. Naively, one
might think that, if a variable is never observed, we can simply ignore its existence. At
a certain level, this intuition is correct. We can construct a network over the observable
variables which is an I-map for the marginal distribution over these variables, i.e., captures
all the dependencies among the observed variables. However, this approach is weak from a
variety of perspectives. Consider, for example, the network in Figure lea). Assume that the
data is generated from such a dependency model, but that the node H is hidden. A minimal
I-map for the marginal distribution is shown in Figure l(b). From a pure representation
perspective, this network is clearly less useful. It contains 12 edges rather than 6, and the
nodes have much bigger families. Hence, as a representation of the process in the domain,
it is much less meaningful. From the perspective of learning these networks from data, the
marginalized network has significant disadvantages. Assuming all the variables are binary,
it uses 59 parameters rather than 17, leading to substantial data fragmentation and thereby
to nonrobust parameter estimates. Moreover, with limited amounts of data the induced
network will usually omit several of the dependencies in the model.

When a hidden variable is known to exist, we can introduce it into the network and ap­
ply known BN learning algorithms. If the network structure is known, algorithms such as

(a) with hidden variable (b) no hidden variable

Figure 1: Hidden variable
simplifies structure

EM [3, 9] or gradient ascent [2] can learn parameters. If the structure is not known, the
Structural EM (SEM) algorithm of [4] can be used to perform structure learning with miss­
ing data. However, we cannot simply introduce a "floating" hidden variable and expect
SEM to place it correctly. Hence, both of these algorithms assume that some other mech­
anism introduces the hidden variable in approximately the right location in the network.
Somewhat surprisingly, only little work has been done on the problem of automatically
detecting that a hidden variable might be present in a certain position in the network.

In this paper, we investigate what is arguably the most straightforward approach for induc­
ing the existence of a hidden variable. This approach, briefly mentioned in [7], is roughly
as follows: We begin by using standard Bayesian model selection algorithms to learn a
structure over the observable variables. We then search the structure for substructures,
which we call semi-cliques, that seem as if they might be induced by a hidden variable.
We temporarily introduce the hidden variable in a way that breaks up the clique, and then
continue learning based on that new structure. If the resulting structure has a better score,
we keep the hidden variable. Surprisingly, this very basic technique does not seem to have
been pursued. (The approach of [10] is similar on the surface, but is actually quite different;
see Section 5.) We provide a concrete and efficient instantiation of this approach and show
how to integrate it with existing learning algorithms such as SEM. We apply our approach
to several synthetic and real datasets, and show that it often provides a good initial place­
ment for the introduced hidden variable. We can therefore use it as a preprocessing step for
SEM, substantially reducing the SEM search space.

2 Learning Structure of Bayesian Networks

Consider a finite set X = {Xl, ... ,Xn } of discrete random variables where each variable
Xi may take on values from a finite set. A Bayesian network is an annotated directed
acyclic graph that encodes a joint probability distribution over X. The nodes of the graph
correspond to the random variables Xl, ... , X n. Each node is annotated with a conditional
probability distribution that represents P(Xi I Pa(Xi)), where Pa(Xi) denotes the parents
of Xi in G. A Bayesian network B specifies a unique joint probability distribution over X
given by: PB(X1 , .•. ,Xn) = n~=l PB(XiIPa(Xi)).

The problem of learning a Bayesian network can be stated as follows. Given a training
set D = {x[I], ... , x[M]} of instances of X, find a network B that best matches D. The
common approach to this problem is to introduce a scoring function that evaluates each
network with respect to the training data, and then to search for the best network according
to this score. The scoring function most commonly used to learn Bayesian networks is the
Bayesian scoring metric [8]. Given a scoring function, the structure learning task reduces
to a problem of searching over the combinatorial space of structures for the structure that
maximizes the score. The standard approach is to use a local search procedure that changes
one arc at a time. Greedy hill-climbing with random restarts is typically used.

The problem of learning in the presence of partially observable data (or known hidden
variables) is computationally and conceptually much harder. In the case of a fixed network
structure, the Expectation Maximization (EM) algorithm of [3] can be used to search for a
(local) maximum likelihood (or maximum a posteriori) assignment to the parameters. The
structural EM algorithm of [4] extends this idea to the realm of structure search. Roughly
speaking, the algorithm uses an E-step as part of structure search. The current model -
structure as well as parameters - is used for computing expected sufficient statistics for

other candidate structures. The candidate structures are scored based on these expected
sufficient statistics. The search algorithm then moves to a new candidate structure. We can
then run EM again, for our new structure, to get the desired expected sufficient statistics.

3 Detecting Hidden Variables

We motivate our approach for detecting hidden variables by considering the simple example
discussed in the introduction. Consider the distribution represented by the network shown
in Figure l(a), where H is a hidden variable. The variable H was the keystone for the
conditional independence assumptions in this network. As a consequence, the marginal
distribution over the remaining variables has almost no structure: each }j depends on all
the Xi'S, and the }j's themselves are also fully connected. A minimal I-map for this
distribution is shown in Figure l(b) . It contains 12 edges compared to the original 6. We
can show that this phenomenon is a typical effect of removing a hidden variables:

Proposition 3.1: Let G be a network over the variables Xl, . .. ,Xn , H. Let I be the
conditional independence statements - statements of the form J(X; Y 1 Z) - that are
implied by G and do not involve H. Let G' be the graph over X I, ... , X n that contains
an edge from Xi to X j whenever G contains such an edge, and in addition: G' contains a
clique over the children}j of H , and G' contains an edge from any parent Xi of H to any
child}j of H. Then G' is a minimall-map for I.

We want to define a procedure that will suggest candidate hidden variables by finding
structures of this type in the context of a learning algorithm. We will apply our procedure to
networks induced by standard structure learning algorithms [7]. Clearly, it is unreasonable
to hope that there is an exact mapping between substructures that have the form described in
Proposition 3.1 and hidden variables. Learned networks are rarely an exact reflection of the
minimal I-map for the underlying distribution. We therefore use a somewhat more flexible
definition, which allows us to detect potential hidden variables. For a node X and a set of
nodes Y, we define 6. (X ; Y) to be the set of neighbors of X (parents or children) within
the subset Y. We define a semi-clique to be a set of nodes Q where each node X E Q
is linked to at least half of Q: 16.(X; Q)I 2:: ~IQI (This revised definition is the strictest
criterion that still accepts a minimally (just one neighbor missing) relaxed 4-Clique.)

We propose a simple heuristic for finding semi-cliques in the graph. We first observe that
each semi-clique must contain a seed which is easy to spot; this seed is a 3-vertex clique.

Proposition 3.2: Any semi-clique of size 4 or more contains a clique ofsize 3.

The first phase of the algorithm is a search for all 3-cliques in the graph. The algorithm then
tries to expand each of them into a maximal semi-clique in a greedy way. More precisely,
at each iteration the algorithm attempts to add a node to the "current" semi-clique. If the
expanded set satisfies the semi-clique property, then it is set as the new "current" clique.
These tests are repeated until no additional variable can be added to the semi-clique. The
algorithm outputs the expansions found based on the different 3-clique "seeds". We note
that this greedy procedure does not find all semi-cliques. The exceptions are typically
two semi-cliques that are joined by a small number of edges, making a larger legal semi­
clique. These cases are of less interest to us, because they are less likely to arise from the
marginalization of a hidden variable.

In the second phase, we convert each of the semi-cliques to a structure candidate containing
a new hidden node. Suppose Q is a semi-clique. Our construction introduces a new variable
H, and replaces all of the incoming edges into variables in Q by edges from H. Parents of
nodes in Q are then made to be parents of H, unless the edge results in a cycle. This process
results in the removal of all intra-clique edges and makes H a proxy for all "outside"
influences on the nodes in the clique.

In the third phase, we evaluate each of these candidate structures in attempt to find the
most useful hidden variable. There are several possible ways in which this candidate can

be utilized by the learning algorithm. We propose three approaches. The simplest assumes
that the network structure, after the introduction of the hidden variable, is fixed. In other
words, we assume that the "true" structure of the network is indeed the result of applying
our transformation to the input network (which was produced by the first stage of learning).
We can then simply fit the parameters using EM, and score the resulting network.

We can improve this idea substantially by noting that our simple transformation of the
semi-clique does not typically recover the true underlying structure of the original model.
In our construction, we chose to make the hidden variable H the parent of all the nodes in
the semi-clique, and eliminate all other incoming edges to variables in the clique. Clearly,
this construction is very limited. There might well be cases where some of the edges in the
clique are warranted even in the presence of the hidden variable. It might also be the case
that some of the edges from H to the semi-clique variables should be reversed. Finally,
it is plausible that some nodes were included in the semi-clique accidentally, and should
not be directly correlated with H . We could therefore allow the learning algorithm - the
SEM algorithm of [4] - to adapt the structure after the hidden variable is introduced. One
approach is to use SEM to fine-tune our model for the part of the network we just changed:
the variables in the semi-clique and the new hidden variable. Therefore, in the second
approach we fix the remaining structure, and consider only adaptations of the edges within
this set of variables. This restriction substantially reduces the search space for the SEM
algorithm. The third approach allows full structural adaptation over the entire network.
This offers the SEM algorithm greater flexibility, but is computationally more expensive.

To summarize our approach: In the first phase we analyze the network learned using con­
ventional structure search to find semi-cliques that indicate potential locations of hidden
variables. In the second phase we convert these semi-cliques into structure candidates
(each containing a new hidden variable). Finally, in the third phase we evaluate each of
these structures (possibly using them as a seed for further search) and return the best scor­
ing network we find.

The main assumption of our approach is that we can find "structural signatures" of hidden
variables via semi-cliques. As we discussed above, it is unrealistic to expect the learned
network G to have exactly the structure described in Proposition 3.1. On the one hand,
learned networks often have spurious edges resulting from statistical noise, which might
cause fragments of the network to resemble these structures even if no hidden variable is
involved. On the other hand, there might be edges that are missing or reversed. Spurious
edges are less problematic. At worst, they will lead us to propose a spurious hidden variable
which will be eliminated by the subsequent evaluation step. Our definition of semi-clique,
with its more flexible structure, partially deals with the problem of missing edges. However,
if our data is very sparse, so that standard learning algorithms will be very reluctant to
produce clusters with many edges, the approach we propose will not work.

4 Experimental Results

Our aim is to evaluate the success of our procedure in detecting hidden variables. To do
so, we evaluated our procedure on both synthetic and real-life data sets. The synthetic data
sets were sampled from Bayesian networks that appear in the literature. We then created a
training set in which we "hid" one variable. We chose to hide variables that are "central"
in the network (i.e., variables that are the parents of several children). The synthetic data
sets allow for a controlled evaluation, and for generating training and testing data sets of
any desired size. However, the data is generated from a distribution that indeed has only
a single hidden variable. A more realistic benchmark is real data, that may contain many
confounding influences. In this case, of course, we do not have a generating model to
compare against.

Insurance: A 27-node network developed to evaluate driver's insurance applications [2].
We hid the variables Accident, Age, MakeModel, and VehicleYear (A, G, M, V in Fig­
ure 2). Alarm: A 37-node network [1] developed to monitor ICU patients. We hid the
variables HR, intubation, LVFailure, and VentLung (H, I, L, V in Figure 2). Stock Data:

'C
o
,g.l!! = CO QI'C
.11:­= til
Cl,S
0
..JO

.l!!
CO
'C

s::: Cl
o s:::
QI .­... s::: o .-
o ~
11)1-

bJ 60081200[]
600 <i> <i> <i> <i> <i> <i> <i> -
400 <i> 400 800

200 <i> ' ¢
200 0" 400

o ' . -200 r:1 ..p + +
. . -400?' 0

-200
AGMV HILV HIL

20~bJ 4008 1000E]' -200" 200& 0+
+ <i> .

-400 0 ' . D -1000

-600 ¢ ¢ -200 A
¢ ¢ '" -2000 ¢

-BOO -400 .

AGMV HILV HIL

Insurance 1k Alarm 1k Alarm 10k

200~ 150

100

50 D
o

SI TB Original 0
Hidden +

200 + G Naive [!]

150

100 'iEl
50

o
-50

SI TB

Figure 2: Comparison of the different approaches. Each point in the graph corresponds to
a network learned by one of the methods. The graphs on the bottom row show the log of
the Bayesian score. The graphs on the top row show log-likelihood of an independent test
set. In all graphs, the scale is normalized to the performance of the No-hidden network,
shown by the dashed line at "0".

A real-life dataset that traces the daily change of 20 major US technology stocks for sev­
eral years (1516 trading days) . These values were discretized to three categories: "up", "no
change", and "down". TB: A real-life dataset that records information about 2302 tubercu­
losis patients in the San Francisco county (courtesy of Dr. Peter Small, Stanford Medical
Center). The data set contains demographic information such as gender, age, ethnic group,
and medical information such as HIV status, TB infection type, and other test results.

In each data set, we applied our procedure as follows. First, we used a standard model se­
lection procedure to learn a network from the training data (without any hidden variables).
In our implementation, we used standard greedy hill-climbing search that stops when it
reaches a plateau it cannot escape. We supplied the learned network as input to the clique­
detecting algorithm which returned a set of candidate hidden variables. We then used each
candidate as the starting point for a new learning phase. The Hidden procedure returns the
highest-scoring network that results from evaluating the different putative hidden variables.

To gauge the quality of this learning procedure, we compared it to two "strawmen" ap­
proaches. The Naive strawman [4] initializes the learning with a network that has a single
hidden variable as parent of all the observed variables. It then applies SEM to get an im­
proved network. This process is repeated several times, where each time a random pertur­
bation (e.g., edge addition) is applied to help SEM to escape local maxima. The Original
strawman, which applied only in synthetic data set, is to use the true generating network on
the data set. That is, we take the original network (that contains the variable we hid) and
use standard parametric EM to learn parameters for it. This strawman corresponds to cases
where the learner has additional prior knowledge about domain structure.

We quantitatively evaluated each of these networks in two ways . First, we computed the
Bayesian score of each network on the training data. Second, we computed the logarithmic
loss of predictions made by these networks on independent test data. The results are shwon
in Figure 2. In this evaluation, we used the performance of No-Hidden as the baseline for
comparing the other methods. Thus, a positive score of say 100 in Figure 2 indicates a
score which is larger by 100 than the score of No-Hidden. Since scores are the logarithm
of the Bayesian posterior probability of structures (up to a constant), this implies that such
a structure is 2100 times more probable than the structure found by No-Hidden.

We can see that, in most cases, the network learned by Hidden outperforms the network
learned by No-hidden. In the artificial data sets, Original significantly outperforms our
algorithm on test data. This is no surprise: Original has complete knowledge of the struc­
ture which generated the test data. Our algorithm can only evaluate networks according to
their score; indeed, the scores of the networks found by Hidden are better than those of
Original in 12 out of 13 cases tested. Thus, we see that the "correct" structure does not
usually have the highest Bayesian score. Our approach usually outperforms the network
learned by Naive. This improvement is particularly significant in the real-life datasets.

As discussed in Section 3, there are three ways that a learning algorithm can utilize the
original structure proposed by our algorithm. As our goal was to find the best model for
the domain, we ran all three of them in each case, and chose the best resulting network. In
all of our experiments, the variant that fixed the candidate structure and learned parameters
for it resulted in scores that were significantly worse than the networks found by the vari­
ants that employed structure search. The networks trained by this variant also performed
much worse on test data. This highlights the importance of structure search in evaluating a
potential hidden variable. The initial structure candidate is often too simplified; on the one
hand, it forces too many independencies among the variables in the semi-clique, and on the
other, it can add too many parents to the new hidden variable.

The comparison between the two variants that use search is more complex. In many cases,
the variant that gives the SEM complete flexibility in adapting the network structure did
not find a better scoring network than the variant that only searches for edges in the area of
the new variable. In the cases it did lead to improvement, the difference in score was not
significantly larger. Since the variant that restricts SEM is computationally cheaper (often
by an order of magnitude), we believe that it provides a good tradeoff between model
quality and computational cost.

The structures found by our procedure are quite appealing. For example, in the stock
market data, our procedure constructs a hidden variable that is the parent of several stocks:
Microsoft, Intel, Dell, CISCO, and Yahoo. A plausible interpretation of this variable is
"strong" market vs. "stationary" market. When the hidden variable has the "strong" value,
all the stocks have higher probability for going up. When the hidden variable has the
"stationary" probability, these stocks have much higher probability of being in the "no
change" value. We do note that in the learned networks there were still many edges between
the individual stocks. Thus, the hidden variable serves as a general market trend, while the
additional edges make better description of the correlations between individual stocks. The
model we learned for the TB patient dataset was also interesting. One value of the hidden
variable captures two highly dominant segments of the population: older, HIV-negative,
foreign-born Asians, and younger, HIV-positive, US-born blacks. The hidden variable's
children distinguished between the two aggregated subpopulations using the HIV-result
variable, which was also a parent of most of them. We believe that, had we allowed the
hidden variable to have three values, it would have separated these populations.

5 Discussion and Future Work

In this paper, we propose a simple and intuitive algorithm for finding plausible locations
for hidden variables in BN learning. It attempts to detect structural signatures of a hidden
variable in the network learned by standard structure search. We presented experiments
showing that our approach is reasonably successful at producing better models. To our
knowledge, this paper is also the first to provide systematic empirical tests of any approach
to the task of discovering hidden variables.

The problem of detecting hidden variables has received surprisingly little attention. Spirtes
et at. [11] suggest an approach that detects patterns of conditional independencies that can
only be generated in the presence of hidden variables. This approach suffers from two
limitations. First, it is sensitive to failure in few of the multiple independence tests it uses.
Second, it only detects hidden variables that are forced by the qualitative independence
constraints. It cannot detect situations where the hidden variable provides a more succinct

model of a distribution that can be described by a network without a hidden variable (as in
the simple example of Figure 1).

Martin and VanLehn [10] propose an alternative approach that appears, on the surface, to
be similar to ours. They start by checking correlations between all pairs of variables. This
results in a "dependency" graph in which there is an edge from X to Y if their correlation is
above a predetermined threshold. Then they construct a two-layered network that contains
independent hidden variables in the top level, and observables in the bottom layer, such that
every dependency between two observed variables is "explained" by at least one common
hidden parent. This approach suffers from three important drawbacks. First, it does not
eliminate from consideration correlations that can be explained by direct edges among the
observables. Thus, it forms clusters even in cases where the dependencies can be fully
explained by a standard Bayesian network structure. Moreover, since it only examines
pairwise dependencies, it cannot detect conditional independencies, such as X -+ Y -+ Z,
from the data. (In this case, it would learn a hidden variable that is the parent of all three
variables.) Finally, this approach learns a restricted form of networks that requires many
hidden variables to represent dependencies among variables. Thus, it has limited utility in
distinguishing "true" hidden variables from artifacts of the representation.

We plan to test further enhancements to the algorithm in several directions. First, other
possibilities for structural signatures (for example the structure resulting from a many par­
ent - many children configuration) may expand the range of variables we can discover.
Second, our clique-discovering procedure is based solely on the structure of the network
learned. Additional information, such as the confidence of learned edges [6, 5], might help
the procedure avoid spurious signatures. Third, we plan to experiment with multi-valued
hidden variables and better heuristics for selecting candidates out of the different proposed
networks. Finally, we are considering approaches for dealing with sparse data, when the
structural signatures do not manifest. Information-theoretic measures might provide a more
statistical signature for the presence of a hidden variable.

Acknowledgements

This work was supported in part by ISF grant 244/99, Israeli Ministry of Science grant
2008-1-99. Nir Friedman was supported by Alon fellowship, and by the generosity of the
Sacher foundation.

References
[1] 1. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM monitoring system. In

Proc. 2 'nd European Conf. on AI and Medicine. , 1989.
[2] J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden

variables. Machine Learning, 29:213- 244, 1997.
[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. J. Royal Stat. Soc., B 39:1- 39, 1977.
[4] N. Friedman. The Bayesian structural EM algorithm. In UAJ, 1998.
[5] N. Friedman and D. Koller. Being Bayesian about Network Structure. In UAI, 2000.
[6] N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A bootstrap

approach. In UAJ, 1999.
[7] D. Heckerman. A tutorial on learning with Bayesian networks. In Learning in Graphical

Models. 1998.
[8] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combina­

tion of knowledge and statistical data. Machine Learning, 20: 197- 243, 1995.
[9] S. L. Lauritzen. The EM algorithm for graphical association models with missing data. Camp.

Stat.and Data Ana., 19:191- 201,1995.
[10] J. Martin and K. VanLehn. Discrete factor analysis: Learning hidden variables in Bayesian

networks. Technical report, Department of Computer Science, University of Pittsburgh, 1995.
[11] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Springer-Verlag,

1993.

