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A serious problem in learning probabilistic models is the presence of hid­
den variables. These variables are not observed, yet interact with several 
of the observed variables. As such, they induce seemingly complex de­
pendencies among the latter. In recent years, much attention has been 
devoted to the development of algorithms for learning parameters, and 
in some cases structure, in the presence of hidden variables. In this pa­
per, we address the related problem of detecting hidden variables that 
interact with the observed variables. This problem is of interest both for 
improving our understanding of the domain and as a preliminary step that 
guides the learning procedure towards promising models. A very natural 
approach is to search for "structural signatures" of hidden variables -
substructures in the learned network that tend to suggest the presence of 
a hidden variable. We make this basic idea concrete, and show how to 
integrate it with structure-search algorithms. We evaluate this method on 
several synthetic and real-life datasets, and show that it performs surpris­
ingly well. 

1 Introduction 

In the last decade there has been a great deal of research focused on the problem of learning 
Bayesian networks (BNs) from data (e.g., [7]). An important issue is the existence of 
hidden variables that are never observed, yet interact with observed variables. Naively, one 
might think that, if a variable is never observed, we can simply ignore its existence. At 
a certain level, this intuition is correct. We can construct a network over the observable 
variables which is an I-map for the marginal distribution over these variables, i.e., captures 
all the dependencies among the observed variables. However, this approach is weak from a 
variety of perspectives. Consider, for example, the network in Figure lea). Assume that the 
data is generated from such a dependency model, but that the node H is hidden. A minimal 
I-map for the marginal distribution is shown in Figure l(b). From a pure representation 
perspective, this network is clearly less useful. It contains 12 edges rather than 6, and the 
nodes have much bigger families. Hence, as a representation of the process in the domain, 
it is much less meaningful. From the perspective of learning these networks from data, the 
marginalized network has significant disadvantages. Assuming all the variables are binary, 
it uses 59 parameters rather than 17, leading to substantial data fragmentation and thereby 
to nonrobust parameter estimates. Moreover, with limited amounts of data the induced 
network will usually omit several of the dependencies in the model. 

When a hidden variable is known to exist, we can introduce it into the network and ap­
ply known BN learning algorithms. If the network structure is known, algorithms such as 
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Figure 1: Hidden variable 
simplifies structure 

EM [3, 9] or gradient ascent [2] can learn parameters. If the structure is not known, the 
Structural EM (SEM) algorithm of [4] can be used to perform structure learning with miss­
ing data. However, we cannot simply introduce a "floating" hidden variable and expect 
SEM to place it correctly. Hence, both of these algorithms assume that some other mech­
anism introduces the hidden variable in approximately the right location in the network. 
Somewhat surprisingly, only little work has been done on the problem of automatically 
detecting that a hidden variable might be present in a certain position in the network. 

In this paper, we investigate what is arguably the most straightforward approach for induc­
ing the existence of a hidden variable. This approach, briefly mentioned in [7], is roughly 
as follows: We begin by using standard Bayesian model selection algorithms to learn a 
structure over the observable variables. We then search the structure for substructures, 
which we call semi-cliques, that seem as if they might be induced by a hidden variable. 
We temporarily introduce the hidden variable in a way that breaks up the clique, and then 
continue learning based on that new structure. If the resulting structure has a better score, 
we keep the hidden variable. Surprisingly, this very basic technique does not seem to have 
been pursued. (The approach of [10] is similar on the surface, but is actually quite different; 
see Section 5.) We provide a concrete and efficient instantiation of this approach and show 
how to integrate it with existing learning algorithms such as SEM. We apply our approach 
to several synthetic and real datasets, and show that it often provides a good initial place­
ment for the introduced hidden variable. We can therefore use it as a preprocessing step for 
SEM, substantially reducing the SEM search space. 

2 Learning Structure of Bayesian Networks 

Consider a finite set X = {Xl, ... ,Xn } of discrete random variables where each variable 
Xi may take on values from a finite set. A Bayesian network is an annotated directed 
acyclic graph that encodes a joint probability distribution over X. The nodes of the graph 
correspond to the random variables Xl, ... , X n. Each node is annotated with a conditional 
probability distribution that represents P(Xi I Pa(Xi)), where Pa(Xi) denotes the parents 
of Xi in G. A Bayesian network B specifies a unique joint probability distribution over X 
given by: PB(X1 , .•. ,Xn ) = n~=l PB(XiIPa(Xi)). 

The problem of learning a Bayesian network can be stated as follows. Given a training 
set D = {x[I], ... , x[ M]} of instances of X, find a network B that best matches D. The 
common approach to this problem is to introduce a scoring function that evaluates each 
network with respect to the training data, and then to search for the best network according 
to this score. The scoring function most commonly used to learn Bayesian networks is the 
Bayesian scoring metric [8]. Given a scoring function, the structure learning task reduces 
to a problem of searching over the combinatorial space of structures for the structure that 
maximizes the score. The standard approach is to use a local search procedure that changes 
one arc at a time. Greedy hill-climbing with random restarts is typically used. 

The problem of learning in the presence of partially observable data (or known hidden 
variables) is computationally and conceptually much harder. In the case of a fixed network 
structure, the Expectation Maximization (EM) algorithm of [3] can be used to search for a 
(local) maximum likelihood (or maximum a posteriori) assignment to the parameters. The 
structural EM algorithm of [4] extends this idea to the realm of structure search. Roughly 
speaking, the algorithm uses an E-step as part of structure search. The current model -
structure as well as parameters - is used for computing expected sufficient statistics for 



other candidate structures. The candidate structures are scored based on these expected 
sufficient statistics. The search algorithm then moves to a new candidate structure. We can 
then run EM again, for our new structure, to get the desired expected sufficient statistics. 

3 Detecting Hidden Variables 

We motivate our approach for detecting hidden variables by considering the simple example 
discussed in the introduction. Consider the distribution represented by the network shown 
in Figure l(a), where H is a hidden variable. The variable H was the keystone for the 
conditional independence assumptions in this network. As a consequence, the marginal 
distribution over the remaining variables has almost no structure: each }j depends on all 
the Xi'S, and the }j's themselves are also fully connected. A minimal I-map for this 
distribution is shown in Figure l(b) . It contains 12 edges compared to the original 6. We 
can show that this phenomenon is a typical effect of removing a hidden variables: 

Proposition 3.1: Let G be a network over the variables Xl, . .. ,Xn , H. Let I be the 
conditional independence statements - statements of the form J(X; Y 1 Z) - that are 
implied by G and do not involve H. Let G' be the graph over X I, ... , X n that contains 
an edge from Xi to X j whenever G contains such an edge, and in addition: G' contains a 
clique over the children}j of H , and G' contains an edge from any parent Xi of H to any 
child}j of H. Then G' is a minimall-map for I. 

We want to define a procedure that will suggest candidate hidden variables by finding 
structures of this type in the context of a learning algorithm. We will apply our procedure to 
networks induced by standard structure learning algorithms [7]. Clearly, it is unreasonable 
to hope that there is an exact mapping between substructures that have the form described in 
Proposition 3.1 and hidden variables. Learned networks are rarely an exact reflection of the 
minimal I-map for the underlying distribution. We therefore use a somewhat more flexible 
definition, which allows us to detect potential hidden variables. For a node X and a set of 
nodes Y, we define 6. (X ; Y) to be the set of neighbors of X (parents or children) within 
the subset Y. We define a semi-clique to be a set of nodes Q where each node X E Q 
is linked to at least half of Q: 16.(X; Q)I 2:: ~IQI (This revised definition is the strictest 
criterion that still accepts a minimally (just one neighbor missing) relaxed 4-Clique.) 

We propose a simple heuristic for finding semi-cliques in the graph. We first observe that 
each semi-clique must contain a seed which is easy to spot; this seed is a 3-vertex clique. 

Proposition 3.2: Any semi-clique of size 4 or more contains a clique ofsize 3. 

The first phase of the algorithm is a search for all 3-cliques in the graph. The algorithm then 
tries to expand each of them into a maximal semi-clique in a greedy way. More precisely, 
at each iteration the algorithm attempts to add a node to the "current" semi-clique. If the 
expanded set satisfies the semi-clique property, then it is set as the new "current" clique. 
These tests are repeated until no additional variable can be added to the semi-clique. The 
algorithm outputs the expansions found based on the different 3-clique "seeds". We note 
that this greedy procedure does not find all semi-cliques. The exceptions are typically 
two semi-cliques that are joined by a small number of edges, making a larger legal semi­
clique. These cases are of less interest to us, because they are less likely to arise from the 
marginalization of a hidden variable. 

In the second phase, we convert each of the semi-cliques to a structure candidate containing 
a new hidden node. Suppose Q is a semi-clique. Our construction introduces a new variable 
H, and replaces all of the incoming edges into variables in Q by edges from H. Parents of 
nodes in Q are then made to be parents of H, unless the edge results in a cycle. This process 
results in the removal of all intra-clique edges and makes H a proxy for all "outside" 
influences on the nodes in the clique. 

In the third phase, we evaluate each of these candidate structures in attempt to find the 
most useful hidden variable. There are several possible ways in which this candidate can 



be utilized by the learning algorithm. We propose three approaches. The simplest assumes 
that the network structure, after the introduction of the hidden variable, is fixed. In other 
words, we assume that the "true" structure of the network is indeed the result of applying 
our transformation to the input network (which was produced by the first stage of learning). 
We can then simply fit the parameters using EM, and score the resulting network. 

We can improve this idea substantially by noting that our simple transformation of the 
semi-clique does not typically recover the true underlying structure of the original model. 
In our construction, we chose to make the hidden variable H the parent of all the nodes in 
the semi-clique, and eliminate all other incoming edges to variables in the clique. Clearly, 
this construction is very limited. There might well be cases where some of the edges in the 
clique are warranted even in the presence of the hidden variable. It might also be the case 
that some of the edges from H to the semi-clique variables should be reversed. Finally, 
it is plausible that some nodes were included in the semi-clique accidentally, and should 
not be directly correlated with H . We could therefore allow the learning algorithm - the 
SEM algorithm of [4] - to adapt the structure after the hidden variable is introduced. One 
approach is to use SEM to fine-tune our model for the part of the network we just changed: 
the variables in the semi-clique and the new hidden variable. Therefore, in the second 
approach we fix the remaining structure, and consider only adaptations of the edges within 
this set of variables. This restriction substantially reduces the search space for the SEM 
algorithm. The third approach allows full structural adaptation over the entire network. 
This offers the SEM algorithm greater flexibility, but is computationally more expensive. 

To summarize our approach: In the first phase we analyze the network learned using con­
ventional structure search to find semi-cliques that indicate potential locations of hidden 
variables. In the second phase we convert these semi-cliques into structure candidates 
(each containing a new hidden variable). Finally, in the third phase we evaluate each of 
these structures (possibly using them as a seed for further search) and return the best scor­
ing network we find. 

The main assumption of our approach is that we can find "structural signatures" of hidden 
variables via semi-cliques. As we discussed above, it is unrealistic to expect the learned 
network G to have exactly the structure described in Proposition 3.1. On the one hand, 
learned networks often have spurious edges resulting from statistical noise, which might 
cause fragments of the network to resemble these structures even if no hidden variable is 
involved. On the other hand, there might be edges that are missing or reversed. Spurious 
edges are less problematic. At worst, they will lead us to propose a spurious hidden variable 
which will be eliminated by the subsequent evaluation step. Our definition of semi-clique, 
with its more flexible structure, partially deals with the problem of missing edges. However, 
if our data is very sparse, so that standard learning algorithms will be very reluctant to 
produce clusters with many edges, the approach we propose will not work. 

4 Experimental Results 

Our aim is to evaluate the success of our procedure in detecting hidden variables. To do 
so, we evaluated our procedure on both synthetic and real-life data sets. The synthetic data 
sets were sampled from Bayesian networks that appear in the literature. We then created a 
training set in which we "hid" one variable. We chose to hide variables that are "central" 
in the network (i.e., variables that are the parents of several children). The synthetic data 
sets allow for a controlled evaluation, and for generating training and testing data sets of 
any desired size. However, the data is generated from a distribution that indeed has only 
a single hidden variable. A more realistic benchmark is real data, that may contain many 
confounding influences. In this case, of course, we do not have a generating model to 
compare against. 

Insurance: A 27-node network developed to evaluate driver's insurance applications [2]. 
We hid the variables Accident, Age, MakeModel, and VehicleYear (A, G, M, V in Fig­
ure 2). Alarm: A 37-node network [1] developed to monitor ICU patients. We hid the 
variables HR, intubation, LVFailure, and VentLung (H, I, L, V in Figure 2). Stock Data: 
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Figure 2: Comparison of the different approaches. Each point in the graph corresponds to 
a network learned by one of the methods. The graphs on the bottom row show the log of 
the Bayesian score. The graphs on the top row show log-likelihood of an independent test 
set. In all graphs, the scale is normalized to the performance of the No-hidden network, 
shown by the dashed line at "0". 

A real-life dataset that traces the daily change of 20 major US technology stocks for sev­
eral years (1516 trading days) . These values were discretized to three categories: "up", "no 
change", and "down". TB: A real-life dataset that records information about 2302 tubercu­
losis patients in the San Francisco county (courtesy of Dr. Peter Small, Stanford Medical 
Center). The data set contains demographic information such as gender, age, ethnic group, 
and medical information such as HIV status, TB infection type, and other test results. 

In each data set, we applied our procedure as follows. First, we used a standard model se­
lection procedure to learn a network from the training data (without any hidden variables). 
In our implementation, we used standard greedy hill-climbing search that stops when it 
reaches a plateau it cannot escape. We supplied the learned network as input to the clique­
detecting algorithm which returned a set of candidate hidden variables. We then used each 
candidate as the starting point for a new learning phase. The Hidden procedure returns the 
highest-scoring network that results from evaluating the different putative hidden variables. 

To gauge the quality of this learning procedure, we compared it to two "strawmen" ap­
proaches. The Naive strawman [4] initializes the learning with a network that has a single 
hidden variable as parent of all the observed variables. It then applies SEM to get an im­
proved network. This process is repeated several times, where each time a random pertur­
bation (e.g., edge addition) is applied to help SEM to escape local maxima. The Original 
strawman, which applied only in synthetic data set, is to use the true generating network on 
the data set. That is, we take the original network (that contains the variable we hid) and 
use standard parametric EM to learn parameters for it. This strawman corresponds to cases 
where the learner has additional prior knowledge about domain structure. 

We quantitatively evaluated each of these networks in two ways . First, we computed the 
Bayesian score of each network on the training data. Second, we computed the logarithmic 
loss of predictions made by these networks on independent test data. The results are shwon 
in Figure 2. In this evaluation, we used the performance of No-Hidden as the baseline for 
comparing the other methods. Thus, a positive score of say 100 in Figure 2 indicates a 
score which is larger by 100 than the score of No-Hidden. Since scores are the logarithm 
of the Bayesian posterior probability of structures (up to a constant), this implies that such 
a structure is 2100 times more probable than the structure found by No-Hidden. 



We can see that, in most cases, the network learned by Hidden outperforms the network 
learned by No-hidden. In the artificial data sets, Original significantly outperforms our 
algorithm on test data. This is no surprise: Original has complete knowledge of the struc­
ture which generated the test data. Our algorithm can only evaluate networks according to 
their score; indeed, the scores of the networks found by Hidden are better than those of 
Original in 12 out of 13 cases tested. Thus, we see that the "correct" structure does not 
usually have the highest Bayesian score. Our approach usually outperforms the network 
learned by Naive. This improvement is particularly significant in the real-life datasets. 

As discussed in Section 3, there are three ways that a learning algorithm can utilize the 
original structure proposed by our algorithm. As our goal was to find the best model for 
the domain, we ran all three of them in each case, and chose the best resulting network. In 
all of our experiments, the variant that fixed the candidate structure and learned parameters 
for it resulted in scores that were significantly worse than the networks found by the vari­
ants that employed structure search. The networks trained by this variant also performed 
much worse on test data. This highlights the importance of structure search in evaluating a 
potential hidden variable. The initial structure candidate is often too simplified; on the one 
hand, it forces too many independencies among the variables in the semi-clique, and on the 
other, it can add too many parents to the new hidden variable. 

The comparison between the two variants that use search is more complex. In many cases, 
the variant that gives the SEM complete flexibility in adapting the network structure did 
not find a better scoring network than the variant that only searches for edges in the area of 
the new variable. In the cases it did lead to improvement, the difference in score was not 
significantly larger. Since the variant that restricts SEM is computationally cheaper (often 
by an order of magnitude), we believe that it provides a good tradeoff between model 
quality and computational cost. 

The structures found by our procedure are quite appealing. For example, in the stock 
market data, our procedure constructs a hidden variable that is the parent of several stocks: 
Microsoft, Intel, Dell, CISCO, and Yahoo. A plausible interpretation of this variable is 
"strong" market vs. "stationary" market. When the hidden variable has the "strong" value, 
all the stocks have higher probability for going up. When the hidden variable has the 
"stationary" probability, these stocks have much higher probability of being in the "no 
change" value. We do note that in the learned networks there were still many edges between 
the individual stocks. Thus, the hidden variable serves as a general market trend, while the 
additional edges make better description of the correlations between individual stocks. The 
model we learned for the TB patient dataset was also interesting. One value of the hidden 
variable captures two highly dominant segments of the population: older, HIV-negative, 
foreign-born Asians, and younger, HIV-positive, US-born blacks. The hidden variable's 
children distinguished between the two aggregated subpopulations using the HIV-result 
variable, which was also a parent of most of them. We believe that, had we allowed the 
hidden variable to have three values, it would have separated these populations. 

5 Discussion and Future Work 

In this paper, we propose a simple and intuitive algorithm for finding plausible locations 
for hidden variables in BN learning. It attempts to detect structural signatures of a hidden 
variable in the network learned by standard structure search. We presented experiments 
showing that our approach is reasonably successful at producing better models. To our 
knowledge, this paper is also the first to provide systematic empirical tests of any approach 
to the task of discovering hidden variables. 

The problem of detecting hidden variables has received surprisingly little attention. Spirtes 
et at. [11] suggest an approach that detects patterns of conditional independencies that can 
only be generated in the presence of hidden variables. This approach suffers from two 
limitations. First, it is sensitive to failure in few of the multiple independence tests it uses. 
Second, it only detects hidden variables that are forced by the qualitative independence 
constraints. It cannot detect situations where the hidden variable provides a more succinct 



model of a distribution that can be described by a network without a hidden variable (as in 
the simple example of Figure 1). 

Martin and VanLehn [10] propose an alternative approach that appears, on the surface, to 
be similar to ours. They start by checking correlations between all pairs of variables. This 
results in a "dependency" graph in which there is an edge from X to Y if their correlation is 
above a predetermined threshold. Then they construct a two-layered network that contains 
independent hidden variables in the top level, and observables in the bottom layer, such that 
every dependency between two observed variables is "explained" by at least one common 
hidden parent. This approach suffers from three important drawbacks. First, it does not 
eliminate from consideration correlations that can be explained by direct edges among the 
observables. Thus, it forms clusters even in cases where the dependencies can be fully 
explained by a standard Bayesian network structure. Moreover, since it only examines 
pairwise dependencies, it cannot detect conditional independencies, such as X -+ Y -+ Z, 
from the data. (In this case, it would learn a hidden variable that is the parent of all three 
variables.) Finally, this approach learns a restricted form of networks that requires many 
hidden variables to represent dependencies among variables. Thus, it has limited utility in 
distinguishing "true" hidden variables from artifacts of the representation. 

We plan to test further enhancements to the algorithm in several directions. First, other 
possibilities for structural signatures (for example the structure resulting from a many par­
ent - many children configuration) may expand the range of variables we can discover. 
Second, our clique-discovering procedure is based solely on the structure of the network 
learned. Additional information, such as the confidence of learned edges [6, 5], might help 
the procedure avoid spurious signatures. Third, we plan to experiment with multi-valued 
hidden variables and better heuristics for selecting candidates out of the different proposed 
networks. Finally, we are considering approaches for dealing with sparse data, when the 
structural signatures do not manifest. Information-theoretic measures might provide a more 
statistical signature for the presence of a hidden variable. 
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