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Abstract 

In adaptive boosting, several weak learners trained sequentially 
are combined to boost the overall algorithm performance. Re­
cently adaptive boosting methods for classification problems have 
been derived as gradient descent algorithms. This formulation jus­
tifies key elements and parameters in the methods, all chosen to 
optimize a single common objective function. We propose an anal­
ogous formulation for adaptive boosting of regression problems, 
utilizing a novel objective function that leads to a simple boosting 
algorithm. We prove that this method reduces training error, and 
compare its performance to other regression methods. 

The aim of boosting algorithms is to "boost" the small advantage that a hypothesis 
produced by a weak learner can achieve over random guessing, by using the weak 
learning procedure several times on a sequence of carefully constructed distribu­
tions. Boosting methods, notably AdaBoost (Freund & Schapire, 1997), are sim­
ple yet powerful algorithms that are easy to implement and yield excellent results 
in practice. Two crucial elements of boosting algorithms are the way in which a 
new distribution is constructed for the learning procedure to produce the next hy­
pothesis in the sequence, and the way in which hypotheses are combined to pro­
duce a highly accurate output. Both of these involve a set of parameters, whose 
values appeared to be determined in an ad hoc maImer. Recently boosting algo­
rithms have been derived as gradient descent algorithms (Breiman, 1997; Schapire 
& Singer, 1998; Friedman et al., 1999; Mason et al., 1999). These formulations justify 
the parameter values as all serving to optimize a single common objective function. 

These optimization formulations of boosting originally developed for classification 
problems have recently been applied to regression problems. However, key prop­
erties of these regression boosting methods deviate significantly from the classifica­
tion boosting approach. We propose a new boosting algorithm for regression prob­
lems, also derived from a central objective function, which retains these properties. 

In this paper, we describe the original boosting algorithm and summarize boosting 
methods for regression. We present our method and provide a simple proof that 
elucidates conditions under which convergence on training error can be guaran­
teed. We propose a probabilistic framework that clarifies the relationship between 
various optimization-based boosting methods. Finally, we summarize empirical 
comparisons between our method and others on some standard problems. 



1 A Brief Summary of Boosting Methods 

Adaptive boosting methods are simple modular algorithms that operate as follows. 
Let 9 : X -t Y be the function to be learned, where the label set Y is finite, typ­
ically binary-valued. The algorithm uses a learning procedure, which has access 
to n training examples, {(Xl, Y1), ... , (xn, Yn)}, drawn randomly from X x Yac­
cording to distribution D; it outputs a hypothesis I : X -t Y, whose error is the 
expected value of a loss function on I(x) , g(x), where X is chosen according to D. 
Given f, cl > 0 and access to random examples, a strong learning procedure outputs 
with probability 1 - cl a hypothesis with error at most f, with running time polyno­
mial in 1/ f, 1/ cl and the number of examples. A weak learning procedure satisfies 
the same conditions, but where f need only be better than random guessing. 

Schapire (1990) showed that any weak learning procedure, denoted WeakLeam, 
can be efficiently transformed ("boosted") into a strong learning procedure. The 
AdaBoost algorithm achieves this by calling WeakLeam multiple times, in a se­
quence of T stages, each time presenting it with a different distribution over a fixed 
training set and finally combining all of the hypotheses. The algorithm maintains a 
weight w: for each training example i at stage i, and a distribution D t is computed 
by normalizing these weights. The algorithm loops through these steps: 

1. At stagei, the distribution D t is given to WeakLeam, which generates a hy­
pothesis It- The error rate ft of It w.r.t. D t is: ft = 2::i f,(x');t'y ' wU 2::7=1 w~ 

2. The new training distribution is obtained from the new weights: W;+l 
w: * (ft/ (l - ft))Hf,(x')-y'l 

After T stages, a test example X will be classified by a combined weighted-majority 
hypothesis: y = sgn(2::;=1 cdt (x)). Each combination coefficient Ct = log( (1- fd/ fd 
takes into account the accuracy of hypothesis It with respect to its distribution. 

The optimization approach derives these equations as all minimizing a com­
mon objective function J, the expected error of the combined hypotheses, esti­
mated from the training set. The new hypothesis is the step in function space 
in the direction of steepest descent of this objective. For example, if J 
~ 2::7=1 exp(- 2::t yicdt(xi)), then the cost after T rounds is the cost after T - 1 
rounds times the cost of hypothesis IT : 

n T-1 

J (T) ~ L exp (- L yi cdt (xi) ) exp ( _yi cT IT (xi) ) 
i=l t=l 

so training IT to minimize J(T) amounts to minimizing the cost on a weighted 
training distribution. Similarly, the training distribution is formed by normalizing 
updated weights: w:+1 = w: * exp(-yicdt(xi )) = w; * exp(s~cdwhere s: = 1 if 
It (xi) i- yi, else s~ = -1. Note that because the objective function J is multiplica­
tive in the costs of the hypotheses, a key property follows: The objective for each 
hypothesis is formed simply by re-weighting the training distribution. 

This boosting algorithm applies to binary classification problems, but it does not 
readily generalize to regression problems. Intuitively, regression problems present 
special difficulties because hypotheses may not just be right or wrong, but can be a 
little wrong or very wrong. Recently a spate of clever optimization-based boosting 
methods have been proposed for regression (Duffy & Helmbold, 2000; Friedman, 



1999; Karakoulas & Shawe-Taylor, 1999; R~itsch et al., 2000). While these methods 
involve diverse objectives and optimization approaches, they are alike in that new 
hypotheses are formed not by simply changing the example weights, but instead 
by modifying the target values. As such they can be viewed as forms of forward 
stage-wise additive models (Hastie & Tibshirani, 1990), which produce hypotheses 
sequentially to reduce residual error. We study a simple example of this approach, 
in which hypothesis T is trained not to produce the target output yi on a given case 
i, but instead to fit the current residual, r~, where r~ = yi - L,;;11 ctft(x). Note that 
this approach develops a series of hypotheses all based on optimizing a common 
objective, but it deviates from standard boosting in that the distribution of exam­
ples is not used to control the generation of hypotheses, and each hypothesis is not 
trained to learn the same function. 

2 An Objective Function for Boosting Regression Problems 

We derive a boosting algorithm for regression from a different objective function. 
This algorithm is similar to the original classification boosting method in that the 
objective is multiplicative in the hypotheses' costs, which means that the target out­
puts are not altered after each stage, but rather the objective for each hypothesis is 
formed simply by re-weighting the training distribution. The objective function is: 

1 n (T 1) [T " J h = -;;; {; J1 c;'i exp {; Ct(ft(x') - y' )2 (1) 

Here, training hypothesis T to minimize JT, the cost after T stages, amounts to min­
imizing the exponentiated squared error of a weighted training distribution: 

n 

L w~ (c;~ exp [cT(h(xi ) - yi )2J) 
; =1 

We update each weight by multiplying by its respective error, and form the training 
distribution for the next hypothesis by normalizing these updated weights. 

In the standard AdaBoost algorithm, the combination coefficient Ct can be analyti­
cally determined by solving %I; = 0 for Ct. Unfortunately, one cannot analytically 
determine the combination coefficient Ct in our algorithm, but a simple line search 
can be used to find value of Ct that minimizes the cost Jt . We limit Ct to be between 0 
and 1. Finally, optimizing J with respect to y produces a simple linear combination 
rule for the estimate: fj = L,t Ct It (x) / L,t Ct· 

We introduce a constant r as a threshold used to demarcate correct from incorrect 
responses. This threshold is the single parameter of this algorithm that must be cho­
sen in a problem-dependent manner. It is used to judge when the performance of 
a new hypothesis warrants its inclusion: ft = L,i p~ exp[(ft(x i ) - yi )2 - r] < 1. The 
algorithm can be summarized as follows: 



New Boosting Algorithm 

1. Input: 

• training set examples (Xl, yI) , .... (Xn, Yn ) with Y E ~; 

• WeakLeam: learning procedure produces a hypothesis h(x) 
whose accuracy on the training set is judged according to J 

2. Choose initial distribution P1 (xi) = P~ = w~ = ~ 

3. Iterate: 

• Call WeakLearn - minimize Jt with distribution Pt 
• Accept iff Et = ~i P~ exp[(ft(xi ) - yi )2 - r] < 1 
• Set a ~ Ct ~ 1 to minimize Jt (using line search) 
• Update training distribution 

n 

w;+l/L W{+l 
j=l 

4. Estimate output y on input x: 

Y = L cdt (x)/ L Ct 
t t 

3 Proof of Convergence 

Theorem: Assume that for all t ~ T, hypothesis t makes error Et on its distribution. If 
the combined output y is considered to be in error iff (Y - y)2 > r, then the output of the 
boosting algorithm (after T stages) will have error at most E, where 

T T 

E = P[(yi - yi )2 > r] ~ II Et exp[r(T - L cd] 

Proof: We follow the approach used in the AdaBoost proof (Freund & Schapire, 
1997). We show that the sum of the weights at stage T is bounded above by a con­
stant times the product of the Et'S, while at the same time, for each input i that is 
incorrect, its corresponding weight w~ at stage T is significant. 

T 

< II c~1/ 2 exp(r)Et 
t= l 

The inequality holds because a ~ Ct ~ 1. We now compute the new weights: 

L Ct(ft(xi ) - yi )2 = [L ct][Var(fi ) + (yi - yi)2] ~ [L Ct][(yi - yi )2] 
t t t 

where yi = ~t cth(xi )/ ~t Ct and Var(fi ) = ~t ct (h(xi) - yi)2 / ~t Ct. Thus, 
T T T T 

W~+l = (II C;1/2) exp(L Ct(ft (xi ) - yi)2) ~ (II C; 1/2) exp([L Ct][(yi _ yi )2]) 
t=l 



Now consider an example input k such that the final answer is an error. ll1en, by 

definition, (yk - yk)2 > T => W~+l 2:: (TIt c;1/2) exp(T L:t cd. If f is the total 
error rate of the combination output, then: 

T T 

L w~+1 2:: L w~+1 2:: f(II C;1/2) exp(T L Ct) 
k:k error 

T T 

f:::; (L w~+l)(II ci/2) exp[T(T - L Ct)] :::; II ft exp[T(T - L Ct)] 
i t=l t t=l t 

Note that as in the binary AdaBoost theorem, there are no assumptions made here 
about ft, the error rate of individual hypotheses. If all ft = ,6. < I, then f < 
,6.T exp[T(T - L:t Ct)], which is exponentially decreasing as long as Ct -+ 1. 

4 Comparing the Objectives 

We can compare the objectives by adopting a probabilistic framework. We as­
sociate a probability distribution with the output of each hypothesis on input x, 
and combine them to form a consensus model M by multiplying the distributions: 
g(y lx, M) == TIt pt(ylx, (1d,where (1t are parameters specific to hypothesis t. If each 
hypothesis t produces a single output ft (x) and has confidence Ct assigned to it, 
then pt (y lx, (1t ) can be considered a Gaussian with mean It (x) and variance 1/ Ct 

9 (y I x, M) = k [If ci /2] exp [-~ Ct (y - ft ( x ) ) 2] 

Model parameters can be tuned to maximize g(y*lx, M), where y* is the target for 
x; our objective (Eq. 1) is the expected value ofthe reciprocal of g(y* lx, M). 

An alternative objective can be derived by first normalizing g(y lx, M): 

( I M) = g(ylx , M) = TIt pt(ylx, (1d 
pyx, - J, - J, TI ( y,g(ylx,M) y' tPt y'lx, (1t)dy' 

TIUs probability model underlies the product-of-experts model (Hinton, 2000) and 
the logarithmic opinion pool (Bordley, 1982).If we again assume pt(ylx, (1t) ~ 

N(ft(x), C;l)), thenp(ylx, M) is a Gaussian, with mean f(x) = L:£tft(X) and in-
t Ct 

verse variance c = L:t Ct. The objective for this model is: 

JR=-logp(y* lx,M )=c[y*-f(x)f -~logc (2) 

TIUs objective corresponds to a type of residual-fitting algorithm. If r(x) 

[y* - f (x) ] , and {Ct} for t < T are assumed frozen, then training iT to minimize 

J R is achieved by using r (x) as a target. 

These objectives can be further compared w.r.t. a bias-variance decomposition (Ge­
man et aI., 1992; Heskes, 1998). The main term in our objective can be re-expressed: 

L Ct [yO - ft(X)]2 = L Ct [yO - f(x)] 2 + L Ct [ft(x) - f( x) ] 2 = bias+variance 
t t t 

Meanwhile, the main term of JR corresponds to the bias term. Hence a new hy­
pothesis can minimize JR by having low error (ft (x) = y*), or with a deviant (am­
biguous) response (ft(x) -=F f(x) (Krogh & Vedelsby, 1995). Thus our objective at­
tempts to minimize the average error of the models, while the residual-fitting ob­
jective minimizes the error of the average model. 
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Figure 1: Generalization results for our gradient-based boosting algorithm, com­
pared to the residual-fitting and mixture-of-experts algorithms. Left: Test problem 
F1; Right: Boston housing data. Normalized mean-squared error is plotted against 
the number of stages of boosting (or number of experts for the mixture-of-experts). 

5 Empirical Tests of Algorithm 

We report results comparing the performance of our new algorithm with two other 
algorithms. The first is a residual-fitting algorithm based on the J R objective (Eq. 2), 
but the coefficients are not normalized. The second algorithm is a version of the 
mixture-of-experts algorithm aacobs et al., 1991). Here the hypotheses (or experts) 
are trained simultaneously. In the standard mixture-of-experts the combination co­
efficients depend on the input; to make this model comparable to the others, we 
allowed each expert one input-independent, adaptable coefficient. This algorithm 
provides a good alternative to the greedy stage-wise methods, in that the experts 
are trained simultaneously to collectively fit the data. 

We evaluate these algorithms on two problems. The first is the nonlinear prediction 
problem F1 (Friedman, 1991), which has 10 independent input variables uniform in 
[0 , 1]: y = 10 sin( 7rX1X2) + 20(X3 - .5)2 + 10x4 + 5X5 + n where n is a random variable 
drawn from a mean-zero, unit-variance normal distribution. In this problem, only 
five input variables (Xl to X5) have predictive value. We rescaled the target values 
y to be in [0, 3]. We used 400 training examples, and 100 validation and test exam­
ples. The second test problem is the standard Boston Housing problem Here there 
are 506 examples and twelve continuous input variables. We scaled the input vari­
ables to be in [0,1], and the outputs to be in [0, 5] . We used 400 of the examples for 
training, 50 for validation, and the remainder to test generalization. We used neu­
ral networks as the hypotheses and back-propagation as the learning procedure to 
train them. Each network had a layer of tanhO units between the input units and a 
single linear output. For each algorithm, we used early stopping with a validation 
set in order to reduce over-fitting in the hypotheses. 

One finding was that the other algorithms out-performed ours when the hypothe­
ses were simple: when the weak learners had only one or two hidden nodes, the 
residual-fitting algorithm reduced test error. With more hidden nodes the relative 
performance of our algorithm improved. Figure 1 shows average results for three­
hidden-unit networks over 20 runs of each algorithm on the two problems, with ex­
amples randomly assigned to the three sets on each run. The results were consistent 
for different values of T in our algorithm; here T = 0.1. Overall, the residual-fitting 
algorithm exhibited more over-fitting than our method. Over-fitting in these ap­
proaches may be tempered: a regularization technique known as shrinkage, which 
scales combination coefficients by a fractional parameter, has been found to im-



prove generalization in gradient boosting applications to classification (Friedman, 
1999). Finally, the mixture-of-experts algorithm generally out-performed the se­
quential training algorithm. A drawback of this method is the need to specify 
the number of hypotheses in advance; however, given that number, simultaneous 
training is likely less prone to local minima than the sequential approaches. 

6 Conclusion 

We have proposed a new boosting algorithm for regression problems. Like several 
recent boosting methods for regression, the parameters and updates can be derived 
from a single common objective. Unlike these methods, our algorithm forms new 
hypotheses by simply modifying the distribution over training examples. Prelim­
inary empirical comparisons have suggested that our method will not perform as 
well as a residual-fitting approach for simple hypotheses, but it works well for more 
complex ones, and it seems less prone to over-fitting. The lack of over-fitting in our 
method can be traced to the inherent bias-variance tradeoff, as new hypotheses are 
forced to resemble existing ones if they cannot improve the combined estimate. 

We are exploring an extension that brings our method closer to the full mixture-of­
experts. The combination coefficients can be input-dependent: a learner returns not 
only ft(x i ) but also kt(xi ) E [0 ,1], a measure of confidence in its prediction. This 
elaboration makes the weak learning task harder, but may extend the applicabil­
ity of the algorithm: letting each learner focus on a subset of its weighted training 
distribution permits a divide-and-conquer approach to function approximation. 
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