
A Gradient-Based Boosting Algorithm for
Regression Problems

Richard S. Zemel Toniann Pitassi
Department of Computer Science

University of Toronto

Abstract

In adaptive boosting, several weak learners trained sequentially
are combined to boost the overall algorithm performance. Re­
cently adaptive boosting methods for classification problems have
been derived as gradient descent algorithms. This formulation jus­
tifies key elements and parameters in the methods, all chosen to
optimize a single common objective function. We propose an anal­
ogous formulation for adaptive boosting of regression problems,
utilizing a novel objective function that leads to a simple boosting
algorithm. We prove that this method reduces training error, and
compare its performance to other regression methods.

The aim of boosting algorithms is to "boost" the small advantage that a hypothesis
produced by a weak learner can achieve over random guessing, by using the weak
learning procedure several times on a sequence of carefully constructed distribu­
tions. Boosting methods, notably AdaBoost (Freund & Schapire, 1997), are sim­
ple yet powerful algorithms that are easy to implement and yield excellent results
in practice. Two crucial elements of boosting algorithms are the way in which a
new distribution is constructed for the learning procedure to produce the next hy­
pothesis in the sequence, and the way in which hypotheses are combined to pro­
duce a highly accurate output. Both of these involve a set of parameters, whose
values appeared to be determined in an ad hoc maImer. Recently boosting algo­
rithms have been derived as gradient descent algorithms (Breiman, 1997; Schapire
& Singer, 1998; Friedman et al., 1999; Mason et al., 1999). These formulations justify
the parameter values as all serving to optimize a single common objective function.

These optimization formulations of boosting originally developed for classification
problems have recently been applied to regression problems. However, key prop­
erties of these regression boosting methods deviate significantly from the classifica­
tion boosting approach. We propose a new boosting algorithm for regression prob­
lems, also derived from a central objective function, which retains these properties.

In this paper, we describe the original boosting algorithm and summarize boosting
methods for regression. We present our method and provide a simple proof that
elucidates conditions under which convergence on training error can be guaran­
teed. We propose a probabilistic framework that clarifies the relationship between
various optimization-based boosting methods. Finally, we summarize empirical
comparisons between our method and others on some standard problems.

1 A Brief Summary of Boosting Methods

Adaptive boosting methods are simple modular algorithms that operate as follows.
Let 9 : X -t Y be the function to be learned, where the label set Y is finite, typ­
ically binary-valued. The algorithm uses a learning procedure, which has access
to n training examples, {(Xl, Y1), ... , (xn, Yn)}, drawn randomly from X x Yac­
cording to distribution D; it outputs a hypothesis I : X -t Y, whose error is the
expected value of a loss function on I(x) , g(x), where X is chosen according to D.
Given f, cl > 0 and access to random examples, a strong learning procedure outputs
with probability 1 - cl a hypothesis with error at most f, with running time polyno­
mial in 1/ f, 1/ cl and the number of examples. A weak learning procedure satisfies
the same conditions, but where f need only be better than random guessing.

Schapire (1990) showed that any weak learning procedure, denoted WeakLeam,
can be efficiently transformed ("boosted") into a strong learning procedure. The
AdaBoost algorithm achieves this by calling WeakLeam multiple times, in a se­
quence of T stages, each time presenting it with a different distribution over a fixed
training set and finally combining all of the hypotheses. The algorithm maintains a
weight w: for each training example i at stage i, and a distribution D t is computed
by normalizing these weights. The algorithm loops through these steps:

1. At stagei, the distribution D t is given to WeakLeam, which generates a hy­
pothesis It- The error rate ft of It w.r.t. D t is: ft = 2::i f,(x');t'y ' wU 2::7=1 w~

2. The new training distribution is obtained from the new weights: W;+l
w: * (ft/ (l - ft))Hf,(x')-y'l

After T stages, a test example X will be classified by a combined weighted-majority
hypothesis: y = sgn(2::;=1 cdt (x)). Each combination coefficient Ct = log((1- fd/ fd
takes into account the accuracy of hypothesis It with respect to its distribution.

The optimization approach derives these equations as all minimizing a com­
mon objective function J, the expected error of the combined hypotheses, esti­
mated from the training set. The new hypothesis is the step in function space
in the direction of steepest descent of this objective. For example, if J
~ 2::7=1 exp(- 2::t yicdt(xi)), then the cost after T rounds is the cost after T - 1
rounds times the cost of hypothesis IT :

n T-1

J (T) ~ L exp (- L yi cdt (xi)) exp (_yi cT IT (xi))
i=l t=l

so training IT to minimize J(T) amounts to minimizing the cost on a weighted
training distribution. Similarly, the training distribution is formed by normalizing
updated weights: w:+1 = w: * exp(-yicdt(xi)) = w; * exp(s~cdwhere s: = 1 if
It (xi) i- yi, else s~ = -1. Note that because the objective function J is multiplica­
tive in the costs of the hypotheses, a key property follows: The objective for each
hypothesis is formed simply by re-weighting the training distribution.

This boosting algorithm applies to binary classification problems, but it does not
readily generalize to regression problems. Intuitively, regression problems present
special difficulties because hypotheses may not just be right or wrong, but can be a
little wrong or very wrong. Recently a spate of clever optimization-based boosting
methods have been proposed for regression (Duffy & Helmbold, 2000; Friedman,

1999; Karakoulas & Shawe-Taylor, 1999; R~itsch et al., 2000). While these methods
involve diverse objectives and optimization approaches, they are alike in that new
hypotheses are formed not by simply changing the example weights, but instead
by modifying the target values. As such they can be viewed as forms of forward
stage-wise additive models (Hastie & Tibshirani, 1990), which produce hypotheses
sequentially to reduce residual error. We study a simple example of this approach,
in which hypothesis T is trained not to produce the target output yi on a given case
i, but instead to fit the current residual, r~, where r~ = yi - L,;;11 ctft(x). Note that
this approach develops a series of hypotheses all based on optimizing a common
objective, but it deviates from standard boosting in that the distribution of exam­
ples is not used to control the generation of hypotheses, and each hypothesis is not
trained to learn the same function.

2 An Objective Function for Boosting Regression Problems

We derive a boosting algorithm for regression from a different objective function.
This algorithm is similar to the original classification boosting method in that the
objective is multiplicative in the hypotheses' costs, which means that the target out­
puts are not altered after each stage, but rather the objective for each hypothesis is
formed simply by re-weighting the training distribution. The objective function is:

1 n (T 1) [T " J h = -;;; {; J1 c;'i exp {; Ct(ft(x') - y')2 (1)

Here, training hypothesis T to minimize JT, the cost after T stages, amounts to min­
imizing the exponentiated squared error of a weighted training distribution:

n

L w~ (c;~ exp [cT(h(xi) - yi)2J)
; =1

We update each weight by multiplying by its respective error, and form the training
distribution for the next hypothesis by normalizing these updated weights.

In the standard AdaBoost algorithm, the combination coefficient Ct can be analyti­
cally determined by solving %I; = 0 for Ct. Unfortunately, one cannot analytically
determine the combination coefficient Ct in our algorithm, but a simple line search
can be used to find value of Ct that minimizes the cost Jt . We limit Ct to be between 0
and 1. Finally, optimizing J with respect to y produces a simple linear combination
rule for the estimate: fj = L,t Ct It (x) / L,t Ct·

We introduce a constant r as a threshold used to demarcate correct from incorrect
responses. This threshold is the single parameter of this algorithm that must be cho­
sen in a problem-dependent manner. It is used to judge when the performance of
a new hypothesis warrants its inclusion: ft = L,i p~ exp[(ft(x i) - yi)2 - r] < 1. The
algorithm can be summarized as follows:

New Boosting Algorithm

1. Input:

• training set examples (Xl, yI) , (Xn, Yn) with Y E ~;

• WeakLeam: learning procedure produces a hypothesis h(x)
whose accuracy on the training set is judged according to J

2. Choose initial distribution P1 (xi) = P~ = w~ = ~

3. Iterate:

• Call WeakLearn - minimize Jt with distribution Pt
• Accept iff Et = ~i P~ exp[(ft(xi) - yi)2 - r] < 1
• Set a ~ Ct ~ 1 to minimize Jt (using line search)
• Update training distribution

n

w;+l/L W{+l
j=l

4. Estimate output y on input x:

Y = L cdt (x)/ L Ct
t t

3 Proof of Convergence

Theorem: Assume that for all t ~ T, hypothesis t makes error Et on its distribution. If
the combined output y is considered to be in error iff (Y - y)2 > r, then the output of the
boosting algorithm (after T stages) will have error at most E, where

T T

E = P[(yi - yi)2 > r] ~ II Et exp[r(T - L cd]

Proof: We follow the approach used in the AdaBoost proof (Freund & Schapire,
1997). We show that the sum of the weights at stage T is bounded above by a con­
stant times the product of the Et'S, while at the same time, for each input i that is
incorrect, its corresponding weight w~ at stage T is significant.

T

< II c~1/ 2 exp(r)Et
t= l

The inequality holds because a ~ Ct ~ 1. We now compute the new weights:

L Ct(ft(xi) - yi)2 = [L ct][Var(fi) + (yi - yi)2] ~ [L Ct][(yi - yi)2]
t t t

where yi = ~t cth(xi)/ ~t Ct and Var(fi) = ~t ct (h(xi) - yi)2 / ~t Ct. Thus,
T T T T

W~+l = (II C;1/2) exp(L Ct(ft (xi) - yi)2) ~ (II C; 1/2) exp([L Ct][(yi _ yi)2])
t=l

Now consider an example input k such that the final answer is an error. ll1en, by

definition, (yk - yk)2 > T => W~+l 2:: (TIt c;1/2) exp(T L:t cd. If f is the total
error rate of the combination output, then:

T T

L w~+1 2:: L w~+1 2:: f(II C;1/2) exp(T L Ct)
k:k error

T T

f:::; (L w~+l)(II ci/2) exp[T(T - L Ct)] :::; II ft exp[T(T - L Ct)]
i t=l t t=l t

Note that as in the binary AdaBoost theorem, there are no assumptions made here
about ft, the error rate of individual hypotheses. If all ft = ,6. < I, then f <
,6.T exp[T(T - L:t Ct)], which is exponentially decreasing as long as Ct -+ 1.

4 Comparing the Objectives

We can compare the objectives by adopting a probabilistic framework. We as­
sociate a probability distribution with the output of each hypothesis on input x,
and combine them to form a consensus model M by multiplying the distributions:
g(y lx, M) == TIt pt(ylx, (1d,where (1t are parameters specific to hypothesis t. If each
hypothesis t produces a single output ft (x) and has confidence Ct assigned to it,
then pt (y lx, (1t) can be considered a Gaussian with mean It (x) and variance 1/ Ct

9 (y I x, M) = k [If ci /2] exp [-~ Ct (y - ft (x)) 2]

Model parameters can be tuned to maximize g(y*lx, M), where y* is the target for
x; our objective (Eq. 1) is the expected value ofthe reciprocal of g(y* lx, M).

An alternative objective can be derived by first normalizing g(y lx, M):

(I M) = g(ylx , M) = TIt pt(ylx, (1d
pyx, - J, - J, TI (y,g(ylx,M) y' tPt y'lx, (1t)dy'

TIUs probability model underlies the product-of-experts model (Hinton, 2000) and
the logarithmic opinion pool (Bordley, 1982).If we again assume pt(ylx, (1t) ~

N(ft(x), C;l)), thenp(ylx, M) is a Gaussian, with mean f(x) = L:£tft(X) and in-
t Ct

verse variance c = L:t Ct. The objective for this model is:

JR=-logp(y* lx,M)=c[y*-f(x)f -~logc (2)

TIUs objective corresponds to a type of residual-fitting algorithm. If r(x)

[y* - f (x)] , and {Ct} for t < T are assumed frozen, then training iT to minimize

J R is achieved by using r (x) as a target.

These objectives can be further compared w.r.t. a bias-variance decomposition (Ge­
man et aI., 1992; Heskes, 1998). The main term in our objective can be re-expressed:

L Ct [yO - ft(X)]2 = L Ct [yO - f(x)] 2 + L Ct [ft(x) - f(x)] 2 = bias+variance
t t t

Meanwhile, the main term of JR corresponds to the bias term. Hence a new hy­
pothesis can minimize JR by having low error (ft (x) = y*), or with a deviant (am­
biguous) response (ft(x) -=F f(x) (Krogh & Vedelsby, 1995). Thus our objective at­
tempts to minimize the average error of the models, while the residual-fitting ob­
jective minimizes the error of the average model.

0 .065 0.35

0.06

0 .055

0.05 0.3

0.045

0.04

0.035
2 4 8 10

o.25 '------~2---4c---~---8~-----c10

Figure 1: Generalization results for our gradient-based boosting algorithm, com­
pared to the residual-fitting and mixture-of-experts algorithms. Left: Test problem
F1; Right: Boston housing data. Normalized mean-squared error is plotted against
the number of stages of boosting (or number of experts for the mixture-of-experts).

5 Empirical Tests of Algorithm

We report results comparing the performance of our new algorithm with two other
algorithms. The first is a residual-fitting algorithm based on the J R objective (Eq. 2),
but the coefficients are not normalized. The second algorithm is a version of the
mixture-of-experts algorithm aacobs et al., 1991). Here the hypotheses (or experts)
are trained simultaneously. In the standard mixture-of-experts the combination co­
efficients depend on the input; to make this model comparable to the others, we
allowed each expert one input-independent, adaptable coefficient. This algorithm
provides a good alternative to the greedy stage-wise methods, in that the experts
are trained simultaneously to collectively fit the data.

We evaluate these algorithms on two problems. The first is the nonlinear prediction
problem F1 (Friedman, 1991), which has 10 independent input variables uniform in
[0 , 1]: y = 10 sin(7rX1X2) + 20(X3 - .5)2 + 10x4 + 5X5 + n where n is a random variable
drawn from a mean-zero, unit-variance normal distribution. In this problem, only
five input variables (Xl to X5) have predictive value. We rescaled the target values
y to be in [0, 3]. We used 400 training examples, and 100 validation and test exam­
ples. The second test problem is the standard Boston Housing problem Here there
are 506 examples and twelve continuous input variables. We scaled the input vari­
ables to be in [0,1], and the outputs to be in [0, 5] . We used 400 of the examples for
training, 50 for validation, and the remainder to test generalization. We used neu­
ral networks as the hypotheses and back-propagation as the learning procedure to
train them. Each network had a layer of tanhO units between the input units and a
single linear output. For each algorithm, we used early stopping with a validation
set in order to reduce over-fitting in the hypotheses.

One finding was that the other algorithms out-performed ours when the hypothe­
ses were simple: when the weak learners had only one or two hidden nodes, the
residual-fitting algorithm reduced test error. With more hidden nodes the relative
performance of our algorithm improved. Figure 1 shows average results for three­
hidden-unit networks over 20 runs of each algorithm on the two problems, with ex­
amples randomly assigned to the three sets on each run. The results were consistent
for different values of T in our algorithm; here T = 0.1. Overall, the residual-fitting
algorithm exhibited more over-fitting than our method. Over-fitting in these ap­
proaches may be tempered: a regularization technique known as shrinkage, which
scales combination coefficients by a fractional parameter, has been found to im-

prove generalization in gradient boosting applications to classification (Friedman,
1999). Finally, the mixture-of-experts algorithm generally out-performed the se­
quential training algorithm. A drawback of this method is the need to specify
the number of hypotheses in advance; however, given that number, simultaneous
training is likely less prone to local minima than the sequential approaches.

6 Conclusion

We have proposed a new boosting algorithm for regression problems. Like several
recent boosting methods for regression, the parameters and updates can be derived
from a single common objective. Unlike these methods, our algorithm forms new
hypotheses by simply modifying the distribution over training examples. Prelim­
inary empirical comparisons have suggested that our method will not perform as
well as a residual-fitting approach for simple hypotheses, but it works well for more
complex ones, and it seems less prone to over-fitting. The lack of over-fitting in our
method can be traced to the inherent bias-variance tradeoff, as new hypotheses are
forced to resemble existing ones if they cannot improve the combined estimate.

We are exploring an extension that brings our method closer to the full mixture-of­
experts. The combination coefficients can be input-dependent: a learner returns not
only ft(x i) but also kt(xi) E [0 ,1], a measure of confidence in its prediction. This
elaboration makes the weak learning task harder, but may extend the applicabil­
ity of the algorithm: letting each learner focus on a subset of its weighted training
distribution permits a divide-and-conquer approach to function approximation.

References
[1] Bordley, R. (1982). A multiplicative formula for aggregating probability assessments. Managment

Science, 28, 1137-1148.
[2] Breiman, L. (1997). Prediction games and arcing classifiers. TR 504. Statistics Dept., UC Berkeley.
[3] Duffy, N. & Helmbold, D. (2000). Leveraging for regression. In Proceedings of COLT, 13.
[4] Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Camp. and System Sci., 55, 119-139.
[5] Friedman, J. H. (1999). Greedy function approximation: A gradient boosting machine. TR, Dept.

of Statistics, Stanford University.
[6] Friedman, J. H., Hastie, T., & Tibshirani, R. (1999). Additive logistic regression: A statistical view

of boosting. Annals of Statistics, To appear.
[7] Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance

dilemma. Neural Computation, 4,1-58.
[8] Hastie, T & TIbshirani, R. (1990). Generalized Additive Models. Chapman and Hall.
[9] Heskes, T (1998). Bias-variance decompositions for likelihood-based estimators. Neural Computa­

tion, 10, 1425-1433.
[10] Hinton, G. E. (2000). Training products of experts by minimizing contrastive divergence. GC­

NUTR 2000-004. Gatsby Computational Neuroscience Unit, University College London.
[11] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local ex­

perts. Neural Computation, 3,79-87.
[12] Karakoulas, G., & Shawe-Taylor, J. (1999). Towards a strategy for boosting regressors. In Advances

in Large Margin Classifiers, Smola, Bartlett, Schdlkopf & Schuurmans (Eds.).
[13] Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross-validation, and active learning.

InJ\TIps 7.
[14] Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in

function space. In NIPS 11.

[15] Riitsch, G., Mika, S. Onoda, T, Lemm, S. & Miiller, K.-R. (2000). Barrier boosting. In Proceedings of
COLT,13 .

[16] Schapire, R. E. (1990). The strength of weak leamability. Machine Learning, 5, 197-227.
[17] Schapire, R. E. & Singer, Y. (1998). Improved boosting algorithms using confidence-rated

precitions. In Proceedings of COLT, 11.

