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Abstract 

Nearest neighbor classification assumes locally constant class con
ditional probabilities. This assumption becomes invalid in high 
dimensions with finite samples due to the curse of dimensionality. 
Severe bias can be introduced under these conditions when using 
the nearest neighbor rule. We propose a locally adaptive nearest 
neighbor classification method to try to minimize bias. We use a 
Chi-squared distance analysis to compute a flexible metric for pro
ducing neighborhoods that are elongated along less relevant feature 
dimensions and constricted along most influential ones. As a result, 
the class conditional probabilities tend to be smoother in the mod
ified neighborhoods, whereby better classification performance can 
be achieved. The efficacy of our method is validated and compared 
against other techniques using a variety of real world data. 

1 Introduction 

In classification, a feature vector x = (Xl,···, Xqy E lRq, representing an object, 
is assumed to be in one of J classes {i}{=l' and the objective is to build classifier 
machines that assign x to the correct class from a given set of N training samples. 

The K nearest neighbor (NN) classification method [3, 5, 7, 8, 9] is a simple and 
appealing approach to this problem. Such a method produces continuous and over
lapping, rather than fixed, neighborhoods and uses a different neighborhood for 
each individual query so that all points in the neighborhood are close to the query, 
to the extent possible. In addition, it has been shown [4, 6] that the one NN rule 
has asymptotic error rate that is at most twice the Bayes error rate, independent 
of the distance metric used. 

The NN rule becomes less appealing in finite training samples, however. This is 
due to the curse-of-dimensionality [2]. Severe bias can be introduced in the NN 
rule in a high dimensional input feature space with finite samples. As such, the 
choice of a distance measure becomes crucial in determining the outcome of nearest 
neighbor classification. The commonly used Euclidean distance measure, while 
simple computationally, implies that the input space is isotropic or homogeneous. 
However, the assumption for isotropy is often invalid and generally undesirable 
in many practical applications. In general, distance computation does not vary 



with equal strength or in the same proportion in all directions in the feature space 
emanating from the input query. Capturing such information, therefore, is of great 
importance to any classification procedure in high dimensional settings. 

In this paper we propose an adaptive metric classification method to try to mini
mize bias in high dimensions. We estimate a flexible metric for computing neigh
borhoods based on Chi-squared distance analysis. The resulting neighborhoods are 
highly adaptive to query locations. Moreover, the neighborhoods are elongated 
along less relevant feature dimensions and constricted along most influential ones. 
As a result, the class conditional probabilities tend to be constant in the modified 
neighborhoods, whereby better classification performance can be obtained. 

2 Local Feature Relevance Measure 

Our technique is motivated as follows. Let Xo be the test point whose class member
ship we are predicting. In the one NN classification rule, a single nearest neighbor x 
is found according to a distance metric D(x, xo). Let p(jlx) be the class conditional 
probability at point x. Consider the weighted Chi-squared distance [8, 11] 

D( ) = ~ [Pr(jlx) - Pr(jlxoW 
X,Xo f=:. Pr(jlxo) , (1) 

which measures the distance between Xo and the point x, in terms of the difference 
between the class posterior probabilities at the two points. Small D(x, xo) indicates 
that the classification error rate will be close to the asymptotic error rate for one 
nearest neighbor. In general, this can be achieved when Pr(jlx) = Pr(jlxo), which 
states that if Pr(jlx) can be sufficiently well approximated at Xo, the asymptotic 
1-NN error rate might result in finite sample settings. 

Equation (1) computes the distance between the true and estimated posteriors. 
Now, imagine we replace Pr(jlxo) with a quantity that attempts to predict Pr(jlx) 
under the constraint that the quantity is conditioned at a location along a particular 
feature dimension. Then, the Chi-squared distance (1) tells us the extent to which 
that dimension can be relied on to predict Pr(jlx). Thus, Equation (1) provides 
us with a foundation upon which to develop a theory of feature relevance in the 
context of pattern classification. 

Based on the above discussion, our proposal is the following. We first notice that 
Pr(jlx) is a function of x. Therefore, we can compute the conditional expecta
tion of p(jlx), denoted by Pr(jlxi = z), given that Xi assumes value z, where Xi 
represents the ith component of x. That is, Pr(jlxi = z) = E[Pr(jlx)lxi = z] = 
J Pr(jlx)p(xlxi = z)dx. Here p(XIXi = z) is the conditional density of the other 
input variables. Let 

ri(x) = t [Pr(jlx) -.Pr(~Xi = Zi)]2 
j=l Pr(J IXi - Zi) 

(2) 

ri(x) represents the ability offeature i to predict the Pr(jlx)s at Xi = Zi. The closer 
Pr(jlxi = Zi) is to Pr(jlx), the more information feature i carries for predicting the 
class posterior probabilities locally at x. 

We can now define a measure of feature relevance for Xo as 

1 
fi(XO) = K L ri(z), 

zEN(xo) 

(3) 



where N(xo) denotes the neighborhood of Xo containing the K nearest training 
points, according to a given metric. ri measures how well on average the class 
posterior probabilities can be approximated along input feature i within a local 
neighborhood of Xo. Small ri implies that the class posterior probabilities will 
be well captured along dimension i in the vicinity of Xo. Note that ri(xo) is a 
function of both the test point Xo and the dimension i, thereby making ri(xo) a 
local relevance measure. 

The relative relevance, as a weighting scheme, can then be given by the following 
exponential weighting scheme 

q 

Wi(XO) = exp(cRi(XO))/ L exp(cRl(XO)) (4) 
1=1 

where c is a parameter that can be chosen to maximize (minimize) the influence of 
ri on Wi, and Ri(X) = maxj rj(x) - ri(x). When c = 0 we have Wi = l/q, thereby 
ignoring any difference between the ri's. On the other hand, when c is large a change 
in ri will be exponentially reflected in Wi. In this case, Wi is said to follow the Boltz
mann distribution. The exponential weighting is more sensitive to changes in local 
feature relevance (3) and gives rise to better performance improvement. Thus, (4) 
can be used as weights associated with features for weighted distance computation 
D(x, y) = V'L,r=1 Wi(Xi - Yi)2. These weights enable the neighborhood to elongate 
less important feature dimensions, and, at the same time, to constrict the most 
influential ones. Note that the technique is query-based because weightings depend 
on the query [1]. 

3 Estimation 

Since both PrUlx) and Pr(jlxi = Zi) in (3) are unknown, we must estimate them 
using the training data {xn, Yn};;=1 in order for the relevance measure (3) to be 
useful in practice. Here Yn E {I, ... , J}. The quantity Pr(jlx) is estimated by 
considering a neighborhood Nl (x) centered at x: 

(5) 

where 1(·) is an indicator function such that it returns 1 when its argument is true, 
and 0 otherwise. 

To compute PrUlxi = z) = E[PrUlx)lxi = Z], we introduce a dummy variable gj 
such that if Y = j, then gj Ix = 1, otherwise gj Ix = 0, where j = 1,···, J. We 
then have PrUlx) = E[gjlx], from which it is not hard to show that PrUlxi = 
z) = E[gjlxi = z]. However, since there may not be any data at Xi = z, the data 
from the neighborhood of x along dimension i are used to estimate E[gj IXi = z], a 
strategy suggested in [7]. In detail, by noticing gj = l(y = j) the estimate can be 
computed from 

PA (.1 ) 'L,xn EN2(X) l(lxni - xii ~ boi)l(Yn = j) 
r J Xi = Zi = , 

'L,xn EN2(X) l(l xni - xii ~ boi) 
(6) 

where N2 (x) is a neighborhood centered at x (larger than N1 (x)), and the value of 
boi is chosen so that the interval contains a fixed number L of points: 'L,;;=1 1 (I Xni -
xii ~ bo i )l(xn E N2 (x)) = L. Using the estimates in (5) and in (6), we obtain an 
empirical measure of the relevance (3) for each input variable i. 



4 Empirical Results 

In the following we compare several classification methods using real data: (1) Adap
tive metric nearest neighbor (ADAMENN) method (one iteration) described above, 
coupled with the exponential weighting scheme (4); (2) i-ADAMENN - ADAMENN 
with five iterations; (3) Simple K-NN method using the Euclidean distance measure; 
(4) C4.5 decision tree method [12]; (5) Machete [7] - an adaptive NN procedure, in 
which the input variable used for splitting at each step is the one that maximizes 
the estimated local relevance (7); (6) Scythe [7] - a generalization of the Machete 
algorithm, in which the input variables influence each split in proportion to their 
estimated local relevance, rather than the winner-take-all strategy of Machete; (7) 
DANN - discriminant adaptive nearest neighbor classification [8]; and (8) i-DANN 
- DANN with five iterations [8]. 

In all the experiments, the features are first normalized over the training data to 
have zero mean and unit variance, and the test data are normalized using the 
corresponding training mean and variance. Procedural parameters for each method 
were determined empirically through cross-validation. 

Table 1: Average classification error rates. 

Iris Sonar Vowel Glass Image Seg Letter Liver Lung 
ADAMENN 3.0 9.1 10.7 24.8 5.2 2.4 5.1 30.7 40.6 

i-ADAMENN 5.0 9.6 10.9 24.8 5.2 2.5 5.3 30.4 40.6 
K-NN 6.0 12.5 11.8 28.0 6.1 3.6 6.9 32.5 50.0 
C4.5 8.0 23.1 36.7 31.8 21.6 3.7 16.4 38.3 59.4 

Machete 5.0 21.2 20.2 28.0 12.3 3.2 9.1 27.5 50.0 
Scythe 4.0 16.3 15.5 27.1 5.0 3.3 7.2 27.5 50.0 
DANN 6.0 7.7 12.5 27.1 12.9 2.5 3.1 30.1 46.9 

i-DANN 6.0 9.1 21.8 26.6 18.1 3.7 6.1 27.8 40.6 

Classification Data Sets. The data sets used were taken from the VCI Machine 
Learning Database Repository [10], except for the unreleased image data set. They 
are: 1. Iris data. This data set consists of q = 4 measurements made on each of 
N = 100 iris plants of J = 2 species; 2. Sonar data. This data set consists of 
q = 60 frequency measurements made on each of N = 208 data of J = 2 classes 
("mines" and "rocks"); 3. Vowel data. This example has q = 10 measurements 
and 11 classes. There are total of N = 528 samples in this example; 4. Glass 
data. This data set consists of q = 9 chemical attributes measured for each of 
N = 214 data of J = 6 classes; 5. Image data. This data set consists of 40 
texture images that are manually classified into 15 classes. The number of images 
in each class varies from 16 to 80. The images in this database are represented by 
q = 16 dimensional feature vectors; 6. Seg data. This data set consists of images 
that were drawn randomly from a database of 7 outdoor images. There are J = 7 
classes, each of which has 330 instances. Thus, there are N = 2,310 images in the 
database. These images are represented by q = 19 real valued attributes; 7. Letter 
data. This data set consists of q = 16 numerical attributes and J = 26 classes; 8. 
Liver data. This data set consists of 345 instances, represented by q = 6 numerical 
attributes, and J = 2 classes; and 9. Lung data. This example has 32 instances 
having q = 56 numerical features and J = 3 classes. 

Results: Table 1 shows the (cross-validated) error rates for the eight methods 
under consideration on the nine real data sets. Note that the average error rates 
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Figure 1: Performance distributions. 

for the Iris, Sonar, Glass, Liver and Lung data sets were based on leave-one-out 
cross-validation, whereas the error rates for the Vowel and Image data were based 
on ten two-fold cross-validation, and two ten-fold cross-validation for the Seg and 
Letter data, since larger data sets are available in these four cases. 

Table 1 shows clearly that ADAMENN achieved the best or near best performance 
over the nine real data sets, followed by i-ADAMENN. It seems natural to ask 
the question of robustness. That is, how well a particular method m performs 
on average in situations that are most favorable to other procedures. Following 
Friedman [7], we capture robustness by computing the ratio bm of its error rate 
em and the smallest error rate over all methods being compared in a particular 
example: bm = emf minl<k<8 ek. Thus, the best method m* for that example has 
bm • = 1, and all other methods have larger values bm ~ 1, for m :f. m*. The larger 
the value of bm , the worse the performance of the mth method is in relation to the 
best one for that example, among the methods being compared. The distribution 
of the bm values for each method m over all the examples, therefore, seems to be a 
good indicator of robustness. 

Fig. 1 plots the distribution of bm for each method over the nine data sets. The 
dark area represents the lower and upper quartiles of the distribution that are 
separated by the median. The outer vertical lines show the entire range of values 
for the distribution. It is clear that the most robust method over the data sets is 
ADAMENN. In 5/9 of the data its error rate was the best (median = 1.0). In 8/9 
of them it was no worse than 18% higher than the best error rate. In the worst case 
it was 65%. In contrast, C4.5 has the worst distribution, where the corresponding 
numbers are 267%, 432% and 529%. 

Bias and Variance Calculations: For a two-class problem with Pr(Y = 
11x) = p(x), we compute a nearest neighborhood at a query Xo and find the nearest 
neighbor X having class label Y(X) (random variable). The estimate of p(xo) is 
Y(X). The bias and variance of Y(X) are: Bias = Ep(X) - p(xo) and Var = 
Ep(X) (1 - Ep(X)), where the expectation is computed over the distribution of the 
nearest neighbor X [8]. 

We performed simulations to estimate the bias and variance of ADAMENN, KNN, 
DANN and Machete on the following two-class problem. There are q = 2 input 
features and 180 training data. Each class contains three spherical bivariate nor
mal subclasses, having standard deviation 0.75. The means of the 6 subclasses are 



chosen at random without replacement from the integers [1,2, ... ,8] x [1,2, ... ,8]. 
For each class, data are evenly drawn from each of the normal subclasses. Fig. 2 
shows the bias and variance estimates from each method at locations (5,5,0,· . ·,0) 
and (2.3,7,0,···,0) , as a function of the number of noise variables over five in
dependently generated training sets. Here the noise variables have independent 
standard Gaussian distributions. The true probability of class 1 for (5 , 5,0,· . · ,0) 
and (2.3,7,0, · ··,0) are 0.943 and 0.747, respectively. The four methods have sim
ilar variance, since they all use three neighbors for classification. While the bias of 
KNN and DANN increases with increasing number of noise variables, ADAMENN 
retains a low bias by averaging out noise. 

5 Related Work 

Friedman [7] describes an approach to learning local feature relevance that recur
sively homes in on a query along the most (locally) relevant dimension, where local 
relevance is computed from a reduction in prediction error given the query's value 
along that dimension. This method performs well on a number of classification 
tasks. In our notations, local relevance can be described by 

J 

I; (x) = 2: (Pr(j) - Pr(j IXi = Zi)])2, (7) 
j=l 

where Pr(j) represents the expected value of Pr(jlx). In this case, the most infor
mative dimension is the one that deviates the most from Pr(j). 
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Figure 2: Bias and variance estimates. 

The main difference, however, between our relevance measure (3) and Friedman's 
(7) is the first term in the squared difference. While the class conditional probability 
is used in our relevance measure, its expectation is used in Friedman's. As a result, 
a feature dimension is more relevant than others when it minimizes (2) in case of our 
relevance measure, whereas it maximizes (7) in case of Friedman's. Furthermore, we 



take into account not only the test point Xo itself, but also its K nearest neighbors, 
resulting in a relevance measure (3) that is often more robust. 

In [8], Hastie and Tibshirani propose an adaptive nearest neighbor classification 
method based on linear discriminant analysis. The method computes a distance 
metric as a product of properly weighted within and between sum of squares matri
ces. They show that the resulting metric approximates the Chi-squared distance (1) 
by a Taylor series expansion. While sound in theory, the method has limitations. 
The main concern is that in high dimensions we may never have sufficient data to 
fill in q x q matrices. It is interesting to note that our work can serve as a potential 
bridge between Friedman's and that of Hastie and Tibshirani. 

6 Summary and Conclusions 

This paper presents an adaptive metric method for effective pattern classification. 
This method estimates a flexible metric for producing neighborhoods that are elon
gated along less relevant feature dimensions and constricted along most influential 
ones. As a result, the class conditional probabilities tend to be more homogeneous 
in the modified neighborhoods. The experimental results show clearly that the 
ADAMENN algorithm can potentially improve the performance of K-NN and re
cursive partitioning methods in some classification problems, especially when the 
relative influence of input features changes with the location of the query to be 
classified in the input feature space. The results are also in favor of ADAMENN 
over similar competing methods such as Machete and DANN. 
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