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Abstract 

Theories of object recognition often assume that only one representa
tion scheme is used within one visual-processing pathway. Versatility 
of the visual system comes from having multiple visual-processing 
pathways, each specialized in a different category of objects. We 
propose a theoretically simpler alternative, capable of explaining the 
same set of data and more. A single primary visual-processing pathway, 
loosely modular, is assumed. Memory modules are attached to sites 
along this pathway. Object-identity decision is made independently at 
each site. A site's response time is a monotonic-decreasing function of 
its confidence regarding its decision. An observer's response is the 
first-arriving response from any site. The effective representation(s) of 
such a system, determined empirically, can appear to be specialized for 
different tasks and stimuli, consistent with recent clinical and 
functional-imaging findings. This, however, merely reflects a decision 
being made at its appropriate level of abstraction. The system itself is 
intrinsically flexible and adaptive. 

1 Introduction 

How does the visual system represent its knowledge about objects so as to identify 
them? A largely unquestioned assumption in the study of object recognition has 
been that the visual system builds up a representation for an object by sequentially 
transforming an input image into progressively more abstract representations. The 
final representation is taken to be the representation of an object and is entered into 
memory. Recognition of an object occurs when the representation of the object 
currently in view matches an item in memory. 

Highly influential proposals for a common representation of objects [1, 2] have 
failed to show promise of either producing a working artificial system or explaining 
a gamut of behavioral data. This insistence of having a common representation for 
all objects is also a major cause of the debate on whether the perceptual 
representation of objects is 2-D appearance-based or 3-D structure-based [3,4]. 

Recently, a convergence of data [5-9], including those from the viewpoint debate 
itself [10, 11], have been used to suggest that the brain may use multiple 



mechanisms or processing pathways to recognize a multitude of objects. While 
insisting on a common representation for all objects seems too restrictive in light of 
the varying complexity across objects [12], asserting a new pathway for every 
idiosyncratic data clusters seems unnecessary. 

We propose a parsimonious alternative, which is consistent with existing data but 
explains them with novel insights. Our framework relies on a single processing 
pathway. Flexibility and self-adaptivity are achieved by having multiple memory 
and decision sites distributed along the pathway. 

2 Theory and Methods 

If the visual system needs to construct an abstract representation of objects for a 
certain task (e.g. object categorization), it will have to do so via multiple stages. 
The intermediate result at each stage is itself a representation. The entire processing 
pathway thus provides a hierarchy of representations, ranging from the most image
specific at the earliest stage to the most abstract at the latest stage. 

The central idea of our proposal is that the visual system can tap this hierarchical 
collection of representations by attaching memory modules along the processing 
pathway. We further speculate that each memory site makes independent decisions 
about the identity of an incoming image. Each announces its decision after a delay, 
determined by an amount related to the site's confidence about its own decision and 
the amount of memory it needs to consult before reaching the decision. The 
homunculus does nothing but takes the first-arriving response as the system's 
response. Figure la depicts this framework, which we shall call the Hierarchically 
Distributed Decision Theory for object recognition. 
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Figure 1: An illustration of the Hierarchically Distributed Decision Theory 
of object recognition (a) and its implementation in a toy visual system (b). 

2.1 A toy visual system 

We constructed a toy visual system to illustrate various properties of the 
Hierarchically Distributed Decision Theory . The task for this toy system is to 
identify letters presented at arbitrary position and orientation and corrupted by 
Gaussian luminance noise. This system is not meant to be a model of human vision, 
but rather a demonstration of the theory. Given a stimulus (letter+noise), the 
position of the target letter is first estimated and centered in the image (position 
normalization) by computing the centroid of the stimulus' luminance profile. Once 
centered, the principal axis of the luminance profile is determined and the entire 
image is rotated so that this axis is vertical (orientation normalization). The 
representation at this final stage is both position- and orientation-invariant. 
Traditionally, one would commit only this final representation to memory. 

In contrast, the Hierarchically Distributed Decision Theory stated that the 
intermediate results are also committed to some form of sensory memory (Figure 



Ib). A memory item is a feature vector. For this toy system, a feature vector is a 
sub-sampled image at the output of each stage. To recognize a letter, each site .I' 

independently decides the letter's identity L" based on the immediate representation 
Is available to the site. It does so by maximizing the posterior probability Pr(LsIIs), 
assuming 1) independent feature noise of known distribution (in this case, 
independent Gaussian luminance noise of zero mean and standard deviation cr) and 
2) that its memory content completely captures all other sources of correlated noise 
and signal uncertainties (deviation from which is assessed by Eq. 3). Specifically, 

L, = arg max Pr(r II, ) 
re Letters 

(1) 

where Letters is the set of letter identities. A letter identity r is in turn a set of letter 
images Vat a given luminance, which may be shifted or rotated. So we have, 

Pr(rl/,) = ~pr(V II,) = ~pr(l, I V) Pr(V) /pr(l, ) 
(2) 

= Eexp(-II/, - 2VI12]pr(V)/ E Eexp(-III, - 2
VI12]pr(V) 

Ve r 2s reLetters VEr 2s 

In addition to choosing a response, each site delays sending out its response by an 
amount 1s. 1 s is related to each site's own assessment of its confidence about its 
decision and the size of memory it needed to consult to make the decision. 1s is a 
monotonically decreasing function of confidence (one minus the maximum posterior 
probability) and a monotonically increasing function of memory size: 

(3) 1s = ~ 1- max Pr(rl/J +~ 10g(MJ+ho 
reLLtters 

ho, h j, and h2' are constants common to all sites. Ms is the effective number of items 
in memory at site .1' , equal to the number of distinct training views the site saw (or 
the limit of its memory size, whichever is less). In our toy system, M/ is the number 
of distinct training views presented to the system. M2 is approximately the number 
of training views with distinct orientations (because h is normalized by position), 
and M3 is effectively one view per letter. In general, M/ > M2 > M3. Relative to the 
decision time 1" the processing time required to perform normalizations is assumed 
to be negligible (This assumption can be removed by letting ho depend on site .1'.) 

2.2 Learning and testing 

The learning component of the theory has yet to be determined. For our toy system, 
we assumed that the items kept in memory are free of luminance noise but subjected 
to normalization errors caused by the luminance noise (e.g. the position of a letter 
may not be perfectly determined). 

We measured performance of the toy system by first exposing it to 5 orientations 
and 20 positions of each letter at high signal-to-noise ratio (SNR). Ten letters from 
the Times Roman font were used in the simulation (bcdeghnopw). The system 
keeps in memory those studied views (Site 1) and their normalized versions (Sites 2 
& 3). Therefore, M/ = 5x20xlO = 1000. Since the normalization processes are 
reliable at high SNR, M2 "" 50, and M3 "" 10. 

We tested the system by presenting it with letters from either the studied views, or 
views it had not seen before. In the latter case, a novel view could be either with 
novel position alone, or with both novel position and orientation. The test stimuli 
were presented at SNR ranging from 210 to 1800 (Weber contrast of 10-30% at 
mean luminance of 48 cd/m2 and a noise standard deviation of 10 cd/m2). 



3 Results and Discussions 

Figure 2a shows the performance of our toy visual system under different stimulus 
conditions. The numbered thin curves indicate recognition accuracy achieved by 
each site. As expected, Site 1, which kept raw images in memory, achieved the best 
accuracy when tested with studied views, but it could not generalize to novel views. 
In contrast, Site 3 maintained essentially the same level of performance regardless 
of view condition - its representation was invariant to position and orientation. 
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Figure 2: (a) Accuracy of the system (solid symbols) verses accuracy of 
each site (numbered curves) under different contrast and view conditions. 
(b) Relative frequency of a site issuing the first-arriving response. 

The thick curves with solid symbols indicated the system's performance based on 
first-arriving responses. Clearly, it tracked the performance of the best-performing 
site under all conditions. Under the novel-position condition, the system's 
performance was even better than the best-performing sites. This is because 
although Site 2 and 3 performed equally well, they made different errors. The 
simple delay rule effectively picked out the most reliable response at each trial. 

Figure 2b shows the source distribution of the first-arriving responses. When 
familiar (i.e. studied) views were presented at low contrast (low SNR), Site 1, which 
used raw image as the representation, was responsible for issuing about 60% of the 
first-arriving responses. This is because normalization processes tend to be less 
reliable at low SNR. Whenever an input to Site 2 or 3 cannot be properly 
normalized, it will match poorly to the normalized views in memory, resulting in 
lower confidence and longer delay . As contrast increased, normalization processes 
became more accurate, and the first-arriving responses shifted to the higher sites. 
Higher sites encode more invariance, and thus need to consult fewer memory items. 
Lastly, when novel views were presented, Site 3 tended to be the most active, since 
it was the only site that fully captured all the invariance necessary for this condition. 

The delay mechanism specified by Eq. 3 allows the system as a whole to be self
adaptive. Its effective representation, if we can speak of such, is flexible. No site is 
exclusively responsible for any particular kind of stimuli. Instead, the decision is 
always distributed across sites in a trial-by-trial basis. 

What do existing human data on object recognition have to say about this simple 
framework? Wouldn't those data supporting functional specialization or object
category-specific representations argue against this framework? Not at all! 

3.1 Viewpoint effects 

Entry-level object recognition [13] often shows less viewpoint dependence than 
subordinate-level object recognition. This has been taken to suggest that two 



different mechanisms or forms of representation may be subserving these two types 
of object recognition tasks [4]. 

Figure 3a shows our system's overall performance in response time (RT) and error 
rate when tested with the studied (thus "familiar") and the novel (new positions and 
orientations) views. The difference in RT and error rate between these two 
conditions (Figure 3b) is a rough measure of the viewpoint effect. Even though the 
system includes a site (Site 3) with viewpoint-invariant representation, the system's 
overall performance still depends on viewpoint, particularly at low contrast. 
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Figure 3: (a) RT and error rate of the toy system when tested with either 
the studied or novel views. (b) Difference between the two conditions. 

Because the representation space of this toy system is the image space, contrast is a 
direct measure of "perceptual" distinctiveness. Figure 3b shows that when objects 
were sufficiently distinct (as in entry-level recognition), there was little or no 
viewpoint effect. When objects were highly similar, performances were equally 
poor for studied and novel views, so there was little viewpoint effect to speak of. 
Viewpoint effect was localized to a mid-range of distinctiveness. Within this range, 
increasing similarity increased viewpoint dependence. The fact that viewpoint 
effect was present only within a bounded range of distinctiveness agrees with the 
general experience that sizable viewpoint effect is uncommon unless artificially
created objects or objects chosen from the same category (subordinate-level 
recognition) are used. 

3.2 Functionally specialized brain regions 

Various fMRI studies have observed what appears to be functionally specialized 
brain regions involved in object perception [7-9]. To identify and localize such 
areas, a typical approach is to subtract the observed hemodynamic signals under one 
stimulus condition from that under a different condition. An area is said to be 
"selective" to a stimulus type X if its signal strength is higher whenever X, as 
opposed to some other type of stimuli, is displayed. 

We performed a simulated "imaging" on our toy visual system. Consider Figure 3b. 
If we assume that one unit of metabolic energy is needed to send a response, and no 
more response will be sent after the first-arriving response has been received, we 
can re-Iabel the x-axis of the histograms as "hemodynamic signal", or "activation 
level". Furthermore, as mentioned before, we can label stimuli in high contrast as 
"distinct objects" and those in low contrast as "similar objects." 

When we did "similar minus distinct", we obtained the result shown in the lower 
right-hand panel in Figure 4a. Site 1 was more active than all other sites when 
recognition was between similar objects, while Site 3 was more active when 
recognition was between distinct objects. The standard practice of interpreting such 
a result would label Site 1 as an area for processing similar (perhaps subordinate-



level) objects, and Site 3 as an area for processing distinct (perhaps entry-level) 
objects. Knowing how the decisions are actually made however, such labeling is 
clearly misguided. 

When instead we did "familiar minus novel", we obtained a similar pattern of result 
(Figure 4a, upper right) . However, this time we would have to label Site 1 as an 
area for processing familiar objects (or an area for expertise), and Site 3 for novel 
objects. Analogous to an on-going debate about expertise vs . object-specificity 
[14], whether Site 1 is for familiar objects or similar objects cannot be resolved 
based on subtraction method alone. 

According to the standard interpretation of the subtraction method, our toy visual 
system appeared to contain functionally specialized sites; yet, none of the sites were 
designed to specialize in any kind of stimuli. Even in the most extreme cases, no 
site was responsible for more than 70% of the decisions. 

One last point is worth mentioning. The primary visual pathway was equally active 
under all conditions, so its activity became invisible after subtraction. The observed 
signal change revealed only the difference in memory activities. 
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Figure 4: The toy visual system gives the appearance of contalOlOg 
functionally specialized modules in simulated functional imaging (a) and 
lesion studies (b). 

3.3 Category-specific deficits 

Patients with prosopagnosia cannot recognize faces, but their ability for recognizing 
other objects are often spared. Patients with visual object agnosia have the opposite 
impairments. This kind of double dissociation is taken as another evidence to 
suggest that the visual system contains object-specific modules (cf. [15]). 

We observed the same kind of double dissociation with our toy model. Figure 4b 
shows what happened when we "lesioned" different memory sites in our system by 
preventing a site from issuing any response. When Site 1 was lesioned, recognition 
performance for similar-but-familiar objects (analog to familiar faces) was impeded 
while performance for distinct-but-novel objects was spared. The opposite was true 
when Site 3 was lesioned. It is worth restating that our toy system consisted of only 
a single processing pathway and no category-specific representations. 

4 Conclusion 

Intermediate representations along a single visual-processing pathway form a 
natural hierarchy of abstractions. We have shown that by attaching sensory memory 
modules to the pathway, this hierarchy can be exploited to achieve an effective 
representation of objects that is highly flexible and adaptive. Each memory module 



makes independent decision regarding the identity of an object based on the 
intermediate representation available to it. Each module delays sending out its 
response by an amount related to its confidence about its decision, in addition to the 
time required for memory lookup. The first-arriving response becomes the system's 
response. 

It is an attractive conjecture that this scheme of adaptive representation may be used 
by the visual system. Through a toy example, we have shown that such a system 
can appear to behave like one with multiple functionally specialized pathways or 
category-specific representations, raIsmg questions for the contemporary 
interpretations of behavioral, clinical and functional-imaging data regarding the 
neuro-architecture for object recognition. 
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