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Abstract 

Many neural systems extend their dynamic range by adaptation. We ex
amine the timescales of adaptation in the context of dynamically mod
ulated rapidly-varying stimuli, and demonstrate in the fly visual system 
that adaptation to the statistical ensemble of the stimulus dynamically 
maximizes information transmission about the time-dependent stimulus. 
Further, while the rate response has long transients, the adaptation takes 
place on timescales consistent with optimal variance estimation. 

1 Introduction 

Adaptation was one of the first phenomena discovered when Adrian recorded the responses 
of single sensory neurons [1, 2]. Since that time, many different forms of adaptation have 
been found in almost all sensory systems. The simplest forms of adaptation, such as light 
and dark adaptation in the visual system, seem to involve just discarding a large constant 
background signal so that the system can maintain sensitivity to small changes. The idea 
of Attneave [3] and Barlow [4] that the nervous system tries to find an efficient representa
tion of its sensory inputs implies that neural coding strategies should be adapted not just to 
constant parameters such as the mean light intensity, but to the entire distribution of input 
signals [5]; more generally, efficient strategies for processing (not just coding) of sensory 
signals must also be matched to the statistics of these signals [6]. Adaptation to statistics 
might happen on evolutionary time scales, or, at the opposite extreme, it might happen in 
real time as an animal moves through the world. There is now evidence from several sys
tems for real time adaptation to statistics [7, 8, 9], and at least in one case it has been shown 
that the form of this adaptation indeed does serve to optimize the efficiency of represen
tation, maximizing the information that a single neuron transmits about its sensory inputs 
[10]. 

Perhaps the simplest of statistical adaptation experiments, as in Ref [7] and Fig. 1, is to 
switch between stimuli that are drawn from different probability distributions and ask how 
the neuron responds to the switch. When we 'repeat' the experiment we repeat the time 
dependence of the parameters describing the distribution, but we choose new signals from 
the same distributions; thus we probe the response or adaptation to the distributions and not 
to the particular signals. These switching experiments typically reveal transient responses 
to the switch that have rather long time scales, and it is tempting to identify these long time 
scales as the time scales of adaptation. On the other hand, one can also view the process 
of adapting to a distribution as one of learning the parameters of that distribution, or of 
accumulating evidence that the distribution has changed. Some features of the dynamics 



in the switching experiments match the dynamics of an optimal statistical estimator [11], 
but the overall time scale does not: for all the experiments we have seen, the apparent time 
scales of adaptation in a switching experiment are much longer than would be required to 
make reliable estimates of the relevant statistical parameters. 

In this work we re-examine the phenomena of statistical adaptation in the motion sensitive 
neurons of the fly visual system. Specifically, we are interested in adaptation to the vari
ance or dynamic range of the velocity distribution [10]. It has been shown that, in steady 
state, this adaptation includes a rescaling of the neuron's input/output relation, so that the 
system seems to encode dynamic velocity signals in relative units; this allows the system, 
presumably, to deal both with the "-' 50° /s motions that occur in straight flight and with the 
"-' 2000° /s motions that occur during acrobatic flight (see Ref.[12]). Further, the precise 
form of rescaling chosen by the fly's visual system is that which maximizes information 
transmission. There are several natural questions: (1) How long does it take the system to 
accomplish the rescaling of its input/output relation? (2) Are the transients seen in switch
ing experiments an indication of gradual rescaling? (3) If the system adapts to the variance 
of its inputs, is the neural signal ambiguous about the absolute scale of velocity? (4) Can 
we see the optimization of information transmission occurring in real time? 

2 Stimulus structure and experimental setup 

A fly (Calliphora vicina) is immobilized in wax and views a computer controlled oscillo
scope display while we record action potentials from the identified neuron HI using stan
dard methods. The stimulus movie is a random pattern of dark and light vertical bars, and 
the entire pattern moves along a random trajectory with velocity S(t); since the neuron is 
motion (and not position) sensitive we refer to this signal as the stimulus. We construct the 
stimulus S(t) as the product of a normalized white noise s(t), constructed from a random 
number sequence refreshed every Ts = 2 ms, and an amplitude or standard deviation (J'(t) 
which varies on a characteristic timescale Ta » Ts. Frames of the movie are drawn every 
2 ms. For analysis all spike times are discretized at the 2 ms resolution of the movie. 
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Figure 1: (a) The spike rate measured in response to a square-wave modulated white noise stimulus 
set) , averaged over many presentations of set), and normalized by the mean and standard deviation. 
(b) Decay time of the rate following an upward switch as a function of switching period T. 

3 Spike rate dynamics 

Switching experiments as described above correspond to a stimulus such that the amplitude 
(J'(t) is a square wave, alternating between two values (J'l and (J'2, (J'l > (J'2. Experiments 
were performed over a range of switching periods (T = 40, 20, 10, 4 s), with the am
plitudes (J'l and (J'2 in a ratio of 5:1. Remarkably, the timescales of the response depend 



strongly on those of the experiment; in fact, the response times rescale by T, as is seen 
in Fig. lea). The decay of the rate in the first half of the experiment is fitted by an expo
nential, and in Fig. l(b), the resulting decay time T(T) is plotted as a function of T; we 
use an exponential not to insist that this is the correct form, only to extract a timescale. As 
suggested by the rescaling of Fig. lea), the fitted decay times are well described as a linear 
function of the stimulus period. This demonstrates that the timescale of adaptation of the 
rate is not absolute, but is a function of the timescale established in the experiment. 

Large sudden changes in stimulus variance might trigger special mechanisms, so we turn 
to a signal that changes variance continuously: the amplitude (J'(t) is taken to be the ex
ponential of a sinusoid, (J'(t) = exp(asin(27l'kt)), where the period T = 11k was varied 
between 2 s and 240 s, and the constant a is fixed such that the amplitude varies by a factor 
of 10 over a cycle. A typical averaged rate response to the exponential-sinusoidal stimulus 
is shown in Fig. 2(a). The rate is close to sinusoidal over this parameter regime, indicating 
a logarithmic encoding of the stimulus variance. Significantly, the rate response shows a 
phase lead ~ <I> with respect to the stimulus. This may be interpreted as the effect of adap
tation: at every point on the cycle, the gain of the response is set to a value defined by the 
stimulus a short time before. 
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Figure 2: (a) The spike rate measured in response to a exponential-sinusoidal modulation of a white 
noise stimulus set) , averaged over presentations of set) , and normalised by the mean and standard 
deviation, for several periods T. (b) The time shift 0 between response and stimulus, for a range of 
periods T. 

As before, the response of the system was measured over a range of periods T. Fig. 2(b) 
shows the measured relation of the timeshift 8(T) = T ~<I> of the response as a function of 
T. One observes that the relation is nearly linear over more than one order of magnitude in 
T; that is, the phase shift is approximately constant. Once again there is a strong and simple 
dependence of the apparent timescale of adaptation on the stimulus parameters. Responses 
to stimulus sequences composed of many frequencies also exhibit a phase shift, consistent 
with that observed for the single frequency experiments. 

4 The dynamic input-output relation 

Both the switching and sinusoidally modulated experiments indicate that responses to 
changing the variance of input signals have multiple time scales, ranging from a few sec
onds to several minutes. Does it really take the system this long to adjust its input/output 
relation to the new input distribution? In the range of velocities used, and at the contrast 
level used in the laboratory, spiking in HI depends on features of the velocity waveform 
that occur within a window of '" 100 ms. After a few seconds, then, the system has had 
access to several tens of independent samples of the motion signal, and should be able to 
estimate its variance to within'" 20%; after a minute the precision would be better than 
a few percent. In practice, we are changing the input variance not by a few percent but a 



factor of two or ten; if the system were really efficient, these changes would be detected and 
compensated by adaptation on much shorter time scales. To address this, we look directly 
at the input/output relation as the standard deviation u(t) varies in time. 

For simplicity we analyze (as in Ref. [10]) features of the stimulus that modulate the 
probability of occurrence of individual spikes, P(spikelstimulus); we will not consider 
patterns of spikes, although the same methods can be easily generalised. The space of 
stimulus histories of length '" 100 ms, discretised at 2 ms, leading up to a s(like has a 
dimensionality'" 50, too large to allow adequate sampling of P(spikelstimulus) from the 
data, so we must begin by reducing the dimensionality of the stimulus description. 

The simplest way to do so is to find a subset of directions in stimulus space determined to 
be relevant for the system, and to project the stimulus onto that set of directions. These 
directions correspond to linear filters. Such a set of directions can be obtained from the 
moments of the spike-conditional stimulus; the first such moment is the spike-triggered 
average, or reverse correlation function [2]. It has been shown [10] that for HI, under these 
conditions, there are two relevant dimensions: a smoothed version of the velocity, and 
also its derivative. The rescaling observed in steady state experiments was seen to occur 
independently in both dimensions, so without loss of generality we will use as our filter the 
single dimension given by the spike-triggered average. The stimulus projected onto this 
filter will be denoted by So. 

The filtered stimulus is then passed through a nonlinear decision process akin to a threshold. 
To calculate the input/output relation P(spikelso) [10], we use Bayes' rule: 

P(spikelso) 
P(spike) 

P(solspike) 
P(so) 

(1) 

The spike rate r(so) is proportional to the probability of spiking, r(so) ex: P(spikelso), 
leading to the relation 

r(so) P(solspike) = -----',=-:-----:---'--

r P(so) 
(2) 

where r is the mean spike rate. P(so) is the (lrior distribution of the projected stimulus, 
which we know. The distribution P(solspike) is estimated from the projected stimulus 
evaluated at the spike times, and the ratio of the two is the nonlinear input/output relation. 

A number of experiments have shown that the filter characteristics of HI are adaptive, and 
we see this in the present experiments as well: as the amplitude u(t) is decreased, the filter 
changes both in overall amplitude and shape. The filter becomes increasingly extended: 
the system integrates over longer periods of time under conditions of low velocities. Thus 
the filter depends on the input variance, and we expect that there should be an observable 
relaxation of the filter to its new steady state form after a switch in variance. We find, 
however, that within 200 ms following the switch, the amplitude of the filter has already 
adjusted to the new variance, and further that the detailed shape of the filter has attained 
its steady state form in less than I s. The precise timescale of the establishment of the 
new filter shape depends on the value of u: for the change to U1, the steady state form is 
achieved within 200 ms. The long tail of the low variance filter for U2 « (1) is established 
more slowly. Nonetheless, these time scales which characterize adaptation of the filter are 
much shorter than the rate transients seen in the switching experiments, and are closer to 
what we might expect for an efficient estimator. 

We construct time dependent input/output relations by forming conditional distributions us
ing spikes from particular time slices in a periodic experiment. In Figs. 3.I(b) and 3.I(c), 
we show the input/output relation calculated in 1 s bins throughout the switching experi
ment. Within the first second the input/output relation is almost indistinguishable from its 
steady state form. Further, it takes the same form for the two halves of the experiment: it is 
rescaled by the standard deviation, as was seen for the steady state experiments. The close 
collapse or rescaling of the input/output relations depends not only on the normalisation by 
the standard deviation, but also on the use of the "local" adapted filter (i.e. measured in the 
same time bin). Returning to the sinusoidal experiments, the input/output relations were 
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Figure 3: Input/output relations for (a) switching, (b) sinusoidal and (c) randomly modulated exper
iments. Figs. 3.1 show the modulation envelope u(t) , in log for (b) and (c) (solid), and the measured 
rate (dotted), normalised by mean and standard deviation. Figs. 3.2 show input/output relations 
calculated in non-overlapping bins throughout the stimulus cycle, with the input 80 in units of the 
standard deviation of the whole stimulus. Figs. 3.3 show the input/output relations with the input 
rescaled to units of the local standard deviation. 

constructed for T = 45 s in 20 non-overlapping bins of width 2.25 s. Once again the func
tions show a remarkable rescaling which is sharpened by the use of the appropriate local 
filter: see Fig.3.2(b) and (c). Finally, we consider an amplitude which varies randomly with 
correlation time Tu '" 3 s: u(t) is a repeated segment of the exponential of a Gaussian ran
dom process, pictured in Fig.3.3(a), with periodicity T = 90s» Tu. Dividing the stimulus 
into sequential bins of 2 s in width, we obtain the filters for each timeslice, and calculate 
the local prior distributions, which are not Gaussian in this case as they are distorted by the 
local variations of u(t). Nonetheless, the ratio P(solspike)j P(so) conspires such that the 
form of the input/output relation is preserved. 

In all three cases, our results show that the system rapidly and continuously adjusts its 
coding strategy, rescaling the input/output relation with respect to the local variance of the 
input as for steady state stimuli. Variance normalisation occurs as rapidly as is measurable, 
and the system chooses a similar form for the input/output relation in each case. 

5 Information transmission 

What does this mean for the coding efficiency of the neuron? An experiment was designed 
to track the information transmission as a function of time. We use a small set of N 2 s 
long random noise sequences {Si(t)}, i = 1, ... ,N, presented in random order at two 



different amplitudes, 0"1 and 0"2. We then ask how much information the spike train conveys 
about (a) which of the random segments Si(t) and (b) which of the amplitudes O"j was 
used. Specifically, the experiment consists of a series of trials of length 2 s where the fast 
component is one of the sequences {Si}, and after 1 s, the amplitude switches from 0"1 to 
0"2 or vice versa. N was taken to be 40, so that a 2 hour experiment provides approximately 
80 samples for each (Si,O"j). This allows us to measure the mutual information between 
the response and either the fast or the slow component of the stimulus as a function of time 
across the 2 s repeated segment. We use only a very restricted subspace of 0" and s: the 
maximum available information about 0" is 1 bit, and about sis log2N. 

The spike response is represented by "words" [13], generated from the spike times discre
tised to timebins of 2 ms, where no spike is represented by 0, and a spike by 1. A word 
is defined as the binary digit formed from 10 consecutive bins, so there are 210 possible 
words. The information about the fast component S in trials of a given 0" is 

N 

Icr(w(t); s) = H[Pcr(w(t))] - L P(sj)H[Pcr(w(t); Sj)]' 
j=l 

where H is the entropy of the word distribution: 

H[P(w(t))] = - L P(Wk(t)) log2 P(Wk(t)). 
k 

(3) 

(4) 

One can compare this information for different values of 0". Similarly, one can calculate 
the information about the amplitude using a given probe s: 

2 

Is (w(t); 0") = H[Ps(w(t))]- L P(O"j)H[Ps(w(t); O"j)]. (5) 
j=l 

The amount of information for each S j varies rapidly depending on the presence or absence 
of spikes, so we average these contributions over the {Sj} to give I(w; 0"). 
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Figure 4: Information per spike as a function of time where 0" is switched every 2 s. 

The mutual information as a function of time is shown in Fig. 4, presented as bits/spike. 
As one would expect, the amount of information transmitted per second about the stimulus 
details, or s, depends on the ensemble parameter 0": larger velocities allow a higher SNR 
for velocity estimation, and the system is able to transmit more information. However, 



when we convert the information rate to bits/spike, we find that the system is transmitting 
at a constant efficiency of around 1.4 bits/spike. Any change in information rate during a 
switch from 0"1 to 0"2 is undetectable. For a switch from 0"2 to 0"1, the time to recovery is 
of order 100 ms. This demonstrates explicitly that the system is indeed rapidly maximising 
its information transmission. Further, the transient "excess" of spikes following an upward 
switch provide information at a constant rate per spike. The information about the ampli
tude, similarly, remains at a constant level throughout the trial. Thus, information about the 
ensemble variable is retained at all times: the response is not ambiguous with respect to the 
absolute scale of velocity. Despite the rescaling of input/output curves, responses within 
different ensembles are distinguishable. 

6 Discussion 

We find that the neural response to a stimulus with well-separated timescales S(t) = 
O"(t)s(t) takes the form of a ratel8)timing code, where the response r(t) may be approxi
mately modelled as 

r(t) = R[O"(t)]g (s(t)). (6) 
Here R modulates the overall rate and depends on the slow dynamics of the variance enve
lope, while the precise timing of a given spike in response to fast events in the stimulus is 
determined by the nonlinear input/output relation g, which depends only on the normalised 
quantity s(t). Through this apparent normalisation by the local standard deviation, g, as for 
steady-state experiments, maximises information transmission about the fast components 
of the stimulus. The function R modulating the rate varies on much slower timescales so 
cannot be taken as an indicator of the extent of the system's adaptation to a new ensemble. 
Rather, R appears to function as an independent degree of freedom, capable of transmitting 
information, at a slower rate, about the slow stimulus modulations. The presence of many 
timescales in R may itself be an adaptation to the many timescales of variation in natural 
signals. At the same time, the rapid readjustment of the input/output relation - and the 
consequent recovery of information after a sudden change in 0" - indicate that the adaptive 
mechanisms approach the limiting speed set by the need to gather statistics. 
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