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Abstract 

The support vector machine (SVM) is a state-of-the-art technique 
for regression and classification, combining excellent generalisation 
properties with a sparse kernel representation. However, it does 
suffer from a number of disadvantages, notably the absence of prob­
abilistic outputs, the requirement to estimate a trade-off parameter 
and the need to utilise 'Mercer' kernel functions. In this paper we 
introduce the Relevance Vector Machine (RVM), a Bayesian treat­
ment of a generalised linear model of identical functional form to 
the SVM. The RVM suffers from none of the above disadvantages, 
and examples demonstrate that for comparable generalisation per­
formance, the RVM requires dramatically fewer kernel functions. 

1 Introd uction 

In supervised learning we are given a set of examples of input vectors {Xn}~=l 
along with corresponding targets {tn}~=l' the latter of which might be real values 
(in regression) or class labels (classification). From this 'training' set we wish to 
learn a model of the dependency of the targets on the inputs with the objective of 
making accurate predictions of t for previously unseen values of x. In real-world 
data, the presence of noise (in regression) and class overlap (in classification) implies 
that the principal modelling challenge is to avoid 'over-fitting' of the training set. 

A very successful approach to supervised learning is the support vector machine 
(SVM) [8]. It makes predictions based on a function of the form 

N 

y(x) = 2:: wnK(x, x n ) + Wo, (1) 
n=l 

where {wn} are the model 'weights' and K(·,·) is a kernel function. The key feature 
of the SVM is that, in the classification case, its target function attempts to minimise 
the number of errors made on the training set while simultaneously maximising the 
'margin' between the two classes (in the feature space implicitly defined by the 
kernel). This is an effective 'prior' for avoiding over-fitting, which leads to good 
generalisation, and which furthermore results in a sparse model dependent only on 
a subset of kernel functions: those associated with training examples Xn that lie 
either on the margin or on the 'wrong' side of it. State-of-the-art results have been 
reported on many tasks where SVMs have been applied. 
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However, the support vector methodology does exhibit significant disadvantages: 

• Predictions are not probabilistic. In regression the SVM outputs a point 
estimate, and in classification, a 'hard' binary decision. Ideally, we desire to 
estimate the conditional distribution p(tlx) in order to capture uncertainty 
in our prediction. In regression this may take the form of 'error-bars', but it 
is particularly crucial in classification where posterior probabilities of class 
membership are necessary to adapt to varying class priors and asymmetric 
misclassification costs. 

• Although relatively sparse, SVMs make liberal use of kernel functions, the 
requisite number of which grows steeply with the size of the training set. 

• It is necessary to estimate the error/margin trade-off parameter 'e' (and 
in regression, the insensitivity parameter I f' too). This generally entails a 
cross-validation procedure, which is wasteful both of data and computation. 

• The kernel function K(·,·) must satisfy Mercer's condition. 

In this paper, we introduce the 'relevance vector machine' (RVM), a probabilistic 
sparse kernel model identical in functional form to the SVM. Here we adopt a 
Bayesian approach to learning, where we introduce a prior over the weights governed 
by a set of hyperparameters, one associated with each weight, whose most probable 
values are iteratively estimated from the data. Sparsity is achieved because in 
practice we find that the posterior distributions of many of the weights are sharply 
peaked around zero. Furthermore, unlike the support vector classifier, the non­
zero weights in the RVM are not associated with examples close to the decision 
boundary, but rather appear to represent 'prototypical' examples of classes. We 
term these examples 'relevance' vectors, in deference to the principle of automatic 
relevance determination (ARD) which motivates the presented approach [4, 6J. 

The most compelling feature of the RVM is that, while capable of generalisation per­
formance comparable to an equivalent SVM, it typically utilises dramatically fewer 
kernel functions. Furthermore, the RVM suffers from none of the other limitations 
of the SVM outlined above. 

In the next section, we introduce the Bayesian model, initially for regression, and 
define the procedure for obtaining hyperparameter values, and thus weights. In 
Section 3, we give brief examples of application of the RVM in the regression case, 
before developing the theory for the classification case in Section 4. Examples of 
RVM classification are then given in Section 5, concluding with a discussion. 

2 Relevance Vector Regression 

Given a dataset of input-target pairs {xn, tn}~=l' we follow the standard formula­
tion and assume p(tlx) is Gaussian N(tIY(x), a 2 ). The mean ofthis distribution for 
a given x is modelled by y(x) as defined in (1) for the SVM. The likelihood of the 
dataset can then be written as 

p(tlw, a2 ) = (27ra 2 )-N/2 exp { - 2:2 lit - ~w)1I2 } , (2) 

where t = (tl ... tN), W = (wo .. . WN) and ~ is the N x (N + 1) 'design' matrix 
with ~nm = K(xn , Xm- l) and ~nl = 1. Maximum-likelihood estimation of wand 
a2 from (2) will generally lead to severe overfitting, so we encode a preference for 
smoother functions by defining an ARD Gaussian prior [4, 6J over the weights: 

N 

p(wla) = II N(wiIO,ai 1 ), (3) 
i=O 
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with 0 a vector of N + 1 hyperparameters. This introduction of an individual hy­
perparameter for every weight is the key feature of the model, and is ultimately 
responsible for its sparsity properties. The posterior over the weights is then ob­
tained from Bayes' rule: 

p(wlt, 0,0'2) = (21r)-(N+l)/21:E1- 1/ 2 exp { -~(w - J.lY:E-1(w - JL)}, (4) 

with 
:E = (q,TBq, + A)-I, 

JL = :Eq, TBt, 

(5) 

(6) 

where we have defined A = diag(ao,al, ... ,aN) and B = 0'-2IN. Note that 0'2 is 
also treated as a hyperparameter, which may be estimated from the data. 

By integrating out the weights, we obtain the marginal likelihood, or evidence [2], 
for the hyperparameters: 

p(tIO,0'2) = (21r)-N/2IB-1 + q,A -1q,TI- 1/ 2 exp { -~e(B-l + q,A -lq,T)-lt} . 

(7) 

For ideal Bayesian inference, we should define hyperpriors over 0 and 0'2, and 
integrate out the hyperparameters too. However, such marginalisation cannot be 
performed in closed-form here, so we adopt a pragmatic procedure, based on that 
of MacKay [2], and optimise the marginal likelihood (7) with respect to 0 and 0'2, 
which is essentially the type II maximum likelihood method [1] . This is equivalent 
to finding the maximum of p(o, 0'2It), assuming a uniform (and thus improper) 
hyperprior. We then make predictions, based on (4), using these maximising values. 

2.1 Optimising the hyperparameters 

Values of 0 and 0'2 which maximise (7) cannot be obtained in closed form, and 
we consider two alternative formulae for iterative re-estimation of o . First, by 
considering the weights as 'hidden' variables, an EM approach gives: 

new 1 1 
a i = -( 2) - 2' 

Wi p(wlt,Q,u2) Eii + J-Li 
(8) 

Second, direct differentiation of (7) and rearranging gives: 

new 'Yi (9) ai = 2' 
J-Li 

where we have defined the quantities 'Yi = 1 - aiEii, which can be interpreted as a 
measure of how 'well-determined' each parameter Wi is by the data [2]. Generally, 
this latter update was observed to exhibit faster convergence. 

For the noise variance, both methods lead to the same re-estimate: 

(10) 

In practice, during re-estimation, we find that many of the ai approach infinity, 
and from (4), p(wilt,0,0'2) becomes infinitely peaked at zero - implying that 
the corresponding kernel functions can be 'pruned'. While space here precludes a 
detailed explanation, this occurs because there is an 'Occam' penalty to be paid for 
smaller values of ai, due to their appearance in the determinant in the marginal 
likelihood (7). For some ai, a lesser penalty can be paid by explaining the data 
with increased noise 0'2, in which case those ai -+ 00. 
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3 Examples of Relevance Vector Regression 

3.1 Synthetic example: the 'sine' function 

The function sinc(x) = Ixl-1 sin Ixl is commonly used to illustrate support vector 
regression [8], where in place of the classification margin, the f.-insensitive region is 
introduced, a 'tube' of ±f. around the function within which errors are not penalised. 
In this case, the support vectors lie on the edge of, or outside, this region. For 
example, using linear spline kernels and with f. = 0.01, the approximation ofsinc(x) 
based on 100 uniformly-spaced noise-free samples in [-10, 10J utilises 39 support 
vectors [8]. 

By comparison, we approximate the same function with a relevance vector model 
utilising the same kernel. In this case the noise variance is fixed at 0.012 and 0 

alone re-estimated. The approximating function is plotted in Figure 1 (left), and 
requires only 9 relevance vectors. The largest error is 0.0087, compared to 0.01 in 
the SV case. Figure 1 (right) illustrates the case where Gaussian noise of standard 
deviation 0.2 is added to the targets. The approximation uses 6 relevance vectors, 
and the noise is automatically estimated, using (10), as (7 = 0.189. 
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Figure 1: Relevance vector approximation to sinc(x): noise-free data (left), and with 
added Gaussian noise of (]" = 0.2 (right) . The estimated functions are drawn as solid lines 
with relevance vectors shown circled, and in the added-noise case (right) the true function 
is shown dashed. 

3.2 Some benchmarks 

The table below illustrates regression performance on some popular benchmark 
datasets - Friedman's three synthetic functions (results averaged over 100 ran­
domly generated training sets of size 240 with a lOOO-example test set) and the 
'Boston housing' dataset (averaged over 100 randomised 481/25 train/test splits). 
The prediction error obtained and the number of kernel functions required for both 
support vector regression (SVR) and relevance vector regression (RVR) are given. 

Dataset 

Friedman #1 
Friedman #2 
Friedman #3 
Boston Housing 

_ errors_ 
SVR RVR 
2.92 2.80 
4140 3505 

0.0202 0.0164 
8.04 7.46 

_ kernels _ 
SVR RVR 
116.6 59.4 
110.3 6.9 
106.5 11.5 
142.8 39.0 
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4 Relevance Vector Classification 

We now extend the relevance vector approach to the case of classification - Le. 
where it is desired to predict the posterior probability of class membership given the 
input x. We generalise the linear model by applying the logistic sigmoid function 
a(y) = 1/(1 + e-Y ) to y(x) and writing the likelihood as 

N 

P(tlw) = II a{y(xn)}tn [1 - a{Y(Xn)}]l-tn . (11) 
n==l 

However, we cannot integrate out the weights to obtain the marginal likelihood 
analytically, and so utilise an iterative procedure based on that of MacKay [3]: 

1. For the current, fixed, values of a we find the most probable weights WMP 

(the location of the posterior mode). This is equivalent to a standard opti­
misation of a regularised logistic model, and we use the efficient iteratively­
reweighted least-squares algorithm [5] to find the maximum. 

2. We compute the Hessian at WMP: 

\7\7logp(t, wla)1 = _(<)TB<) + A), 
WMP 

(12) 

where Bnn = a{y(xn)} [1 - a{y(xn)}], and this is negated and inverted to 
give the covariance I: for a Gaussian approximation to the posterior over 
weights, and from that the hyperparameters a are updated using (9). Note 
that there is no 'noise' variance a2 here. 

This procedure is repeated until some suitable convergence criteria are satisfied. 
Note that in the Bayesian treatment of multilayer neural networks, the Gaussian 
approximation is considered a weakness of the method if the posterior mode is 
unrepresentative of the overall probability mass. However, for the RVM, we note 
that p(t, wla) is log-concave (i.e. the Hessian is negative-definite everywhere), which 
gives us considerably more confidence in the Gaussian approximation. 

5 Examples of RVM Classification 

5.1 Synthetic example: Gaussian mixture data 

We first utilise artificially generated data in two dimensions in order to illustrate 
graphically the selection of relevance vectors. Class 1 (denoted by 'x ') was sampled 
from a single Gaussian, and overlaps to a small degree class 2 ('.'), sampled from a 
mixture of two Gaussians. 

A relevance vector classifier was compared to its support vector counterpart, using 
the same Gaussian kernel. A value of C for the SVM was selected using 5-fold cross­
validation on the training set. The results for a typical dataset of 200 examples 
are given in Figure 2. The test errors for the RVM (9.32%) and SVM (9.48%) 
are comparable, but the remarkable feature of contrast is the complexity of the 
classifiers. The support vector machine utilises 44 kernel functions compared to 
just 3 for the relevance vector method. 

It is also notable that the relevance vectors are some distance from the decision 
boundary (in x-space). Given further analysis, this observation can be seen to be 
consistent with the hyperparameter update equations. A more qualitative explana­
tion is that the output of a basis function lying on or near the decision boundary 
is a poor indicator of class membership, and such basis functions are naturally 
'penalised' under the Bayesian framework. 






