
An Environment Model for N onstationary
Reinforcement Learning

Samuel P. M. Choi Dit-Yan Yeung Nevin L. Zhang
pmchoi~cs.ust.hk dyyeung~cs.ust.hk lzhang~cs.ust.hk

Department of Computer Science, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

Reinforcement learning in nonstationary environments is generally
regarded as an important and yet difficult problem. This paper
partially addresses the problem by formalizing a subclass of nonsta
tionary environments. The environment model, called hidden-mode
Markov decision process (HM-MDP), assumes that environmental
changes are always confined to a small number of hidden modes.
A mode basically indexes a Markov decision process (MDP) and
evolves with time according to a Markov chain. While HM-MDP
is a special case of partially observable Markov decision processes
(POMDP), modeling an HM-MDP environment via the more gen
eral POMDP model unnecessarily increases the problem complex
ity. A variant of the Baum-Welch algorithm is developed for model
learning requiring less data and time.

1 Introduction

Reinforcement Learning (RL) [7] is a learning paradigm based upon the framework
of Markov decision process (MDP). Traditional RL research assumes that environ
ment dynamics (i.e., MDP parameters) are always fixed (Le., stationary). This
assumption, however, is not realistic in many real-world applications. In elevator
control [3], for instance, the passenger arrival and departure rates can vary signifi
cantly over one day, and should not be modeled by a fixed MDP.

Nonetheless, RL in nonstationary environments is regarded as a difficult problem.
In fact, it is an impossible task if there is no regularity in the ways environment
dynamics change. Hence, some degree of regularity must be assumed. Typically,
nonstationary environments are presummed to change slowly enough such that on
line RL algorithms can be employed to keep track the changes. The online approach
is memory less in the sense that even if the environment ever revert to the previously
learned dynamics, learning must still need to be started all over again.

988 S. P. M Choi, D.-y' Yeung and N. L. Zhang

1.1 Our Proposed Model

This paper proposes a formal model [1] for the nonstationary environments that
repeats their dynamics in certain ways. Our model is inspired by the observations
from the real-world nonstationary tasks with the following properties:

Property 1. Environmental changes are confined to a small number of modes,
which are stationary environments with distinct dynamics. The environment is in
exactly one of these modes at any given time. This concept of modes seems to be
applicable to many real-world tasks. In an elevator control problem, for example,
the system might operate in a morning-rush-hour mode, an evening-rush-hour mode
and a non-rush-hour mode. One can also imagine similar modes for other control
tasks, such as traffic control and dynamic channel allocation [6].

Property 2. Unlike states, modes cannot be directly observed; the current mode
can only be estimated according to the past state transitions. It is analogous to the
elevator control example in that the passenger arrival rate and pattern can only be
inferred through the occurrence of pick-up and drop-off requests.

Property 3. Mode transitions are stochastic events and are independent of the
control system's responses. In the elevator control problem, for instance, the events
that change the current mode of the environment could be an emergency meeting
in the administrative office, or a tea break for the staff on the 10th floor. Obviously,
the elevator's response has no control over the occurrence of these events.

Property 4. Mode transitions are relatively infrequent. In other words, a mode
is more likely to retain for some time before switching to another one. If we consider
the emergency meeting example, employees on different floors take time to arrive at
the administrative office, and thus would generate a similar traffic pattern (drop-off
requests on the same floor) for some period of time.

Property 5. The number of states is often substantially larger than the number
of modes. This is a common property for many real-world applications. In the
elevator example, the state space comprises all possible combinations of elevator
positions, pick-up and drop-off requests, and certainly would be huge. On the other
hand, the mode space could be small. For instance, an elevator control system can
simply have the three modes as described above to approximate the reality.

Based on these properties, an environment model is proposed by introducing a
mode variable to capture environmental changes. Each mode specifies an MDP
and hence completely determines the current state transition function and reward
function (property 1). A mode, however, is not directly observable (property 2),
and evolves with time according to a Markov process (property 3). The model
is therefore called hidden-mode model. Note that our model does not impose any
constraint to satisfy properties 4 and 5. In other words, the hidden-mode model
can work for environments without these two properties. Nevertheless, as will be
shown later, these properties can improve learning in practice.

1.2 Related Work

Our hidden-mode model is related to a non stationary model proposed by Dayan and
Sejnowski [4] . Although our model is more restrictive in terms of representational
power, it involves much fewer parameters and is thus easier to learn. Besides, other
than the number of possible modes, we do not assume any other knowledge about

An Environment Model for Nonstationary Reinforcement Learning 989

the way environment dynamics change. Dayan and Sejnowski, on the other hand,
assume that one knows precisely how the environment dynamics change.

The hidden-mode model can also be viewed as a special case of the hidden-state
model, or partially observable Markov decision process (POMDP). As will be shown
later, a hidden-mode model can always be represented by a hidden-state model
through state augmentation. Nevertheless, modeling a hidden-mode environment
via a hidden-state model will unnecessarily increase the problem complexity. In this
paper, the conversion from the former to the latter is also briefly discussed.

1.3 Our Focus

There are two approaches for RL. Model-based RL first acquires an environment
model and then, from which, an optimal policy is derived. Model-free RL, on the
contrary, learns an optimal policy directly through its interaction with the envi
ronment. This paper is concerned with the first part of the model-based approach,
i.e., how a hidden-mode model can be learned from experience. We will address the
policy learning problem in a separate paper.

2 Hidden-Mode Markov Decision Processes

This section presents our hidden-mode model. Basically, a hidden-mode model is
defined as a finite set of MDPs that share the same state space and action space, with
possibly different transition functions and reward functions. The MDPs correspond
to different modes in which a system operates. States are completely observable
and their transitions are governed by an MDP. In contrast, modes are not directly
observable and their transitions are controlled by a Markov chain. We refer to such
a process as a hidden-mode Markov decision process (HM-MDP). An example of
HM-MDP is shown in Figure l(a).

(a) A 3-mode, 4-state,
I-action HM-MDP

Time •

Mode

Action
StaIC

(b) The evolution of an HM-MDP. The arcs indicate
dependencies between the variables

Figure 1: An HM -MDP

Formally, an HM-MDP is an 8-tuple (Q,S,A,X,Y,R,rr,'l'), where Q, S and A
represent the sets of modes, states and actions respectively; the mode transition
function X maps mode m to n with a fixed probability Xmn; the state transition
function Y defines transition probability, Ym(8, a, s'), from state 8 to 8' given mode
m and action a; the stochastic reward function R returns rewards with mean value
r m (8, a); II and 'l1 denote the prior probabilities of the modes and of the states
respectively. The evolution of modes and states over time is depicted in Figure 1 (b).

990 S. P. M. Choi, D.-y' Yeung and N. L. Zhang

HM-MDP is a subclass of POMDP. In other words, the former can be reformulated
as a special case of the latter. Specifically, one may take an ordered pair of any
mode and observable state in the HM-MDP as a hidden state in the POMDP, and
any observable state of the former as an observation of the latter. Suppose the
observable states sand s' are in modes m and n respectively. These two HM
MDP states together with their corresponding modes form two hidden states (m, s)
and (n, s') for its POMDP counterpart. The transition probability from (m, s) to
(n, s') is then simply the mode transition probability Xmn multiplied by the state
transition probability Ym(s, a, s'). For an M-mode, N-state, K-action HM-MDP,
the equivalent POMDP thus has N observations and M N hidden states. Since
most state transition probabilities are collapsed into mode transition probabilities
through parameter sharing, the number of parameters in an HM-MDP (N2 M K +
M2) is much less than that of its corresponding POMDP (M2 N 2 K).

3 Learning a Hidden-Mode Model

There are now two ways to learn a hidden-mode model. One may learn either an
HM-MDP, or an equivalent POMDP instead. POMDP models can be learned via
a variant of the Baum-Welch algorithm [2]. This POMDP Baum-Welch algorithm
requires 8(M2 N 2T) time and 8(M2 N 2 K) storage for learning an M-mode, N
state, K-action HM-MDP, given T data items.

A similar idea can be applied to the learning of an HM-MDP. Intuitively, one
can estimate the model parameters based on the expected counts of the mode
transitions, computed by a set of auxiliary variables. The major difference from the
original algorithm is that consecutive state transitions, rather than the observations,
are considered. Additional effort is thus needed for handling the boundary cases.
This HM-MDP Baum-Welch algorithm is described in Figure 2.

4 Empirical Studies

This section empirically examines the POMDP Baum-Welch1 and HM-MDP Baum
Welch algorithms. Experiments based on various randomly generated models and
some real-world environments were conducted. The results are quite consistent.
For illustration, a simple traffic control problem is presented. In this problem,
one direction of a two-way traffic is blocked, and cars from two different directions
(left and right) are forced to share the remaining road. To coordinate the traffic,
two traffic lights equipped with sensors are set. The system then has two possible
actions: either to signal cars from the left or cars from the right to pass . For
simpliCity, we assume discrete time steps and uniform speed of the cars.

The system has 8 possible states; they correspond to the combinations of whether
there are cars waiting on the left and the right directions, and the stop signal position
in the previous time step. There are 3 traffic modes. The first one has cars waiting
on the left and the right directions with probabilities 0.3 and 0.1 respectively. In the
second mode, these probabilities are reversed. For the last one, both probabilities
are 0.3. In addition, the mode transition probability is 0.1. A cost of -1.0 results if

lChrisman's algorithm also attempts to learn a minimal possible number of states. Our
paper concerns only with learning the model parameters.

An Environment Model for Nonstationary Reinforcement Learning

Given a collection of data and an initial model parameter vector 0.
repeat

0=0
Compute forward variables (Xt.

(Xl (i) = 1/;$1
(X2(i) = 1I"i 1/;$1 Yi(SI, al,S2)
(Xt+l(j) = L:iEQ (Xt(i) Xii Yi(St,at,St+l)

Compute backward variables (3t .

(3T(i) = 1
(3t(i) = LiEQXii Yi(St,at,St+I) (3t+I(j)

(31(i) = L:iEQ 1I"j Yi(sl , al,s2) (32(j)

Compute the new model parameter 0.

_ .. _ L;-2 {. (i,i)
Xl] - ~T .

L....t=1 "'Yt (I)

1Ti = "Yl (i)

until maxi I Oi - OJ I < to

"Ii E Q
"Ii E Q
"Ii E Q

"Ii E Q
"Ii E Q
"Ii E Q

"I i , j E Q

"Ii E Q

8(a, b) = {01 a = b af.b

Figure 2: HM-MDP Baum-Welch Algorithm

a car waits on either side.

991

The experiments were run with the same initial model for data sets of various sizes.
The algorithms iterated until the maximum change of the model parameters was
less than a threshold of 0.0001. The experiment was repeated for 20 times with
different random seeds in order to compute the median. Then the learned models
were compared in their POMDP forms using the Kullback-Leibler (KL) distance
[5], and the total CPU running time on a SUN Ultra I workstation was measured.
Figure 3 (a) and (b) report the results.

Generally speaking, both algorithms learn a more accurate environment model as
the data size increases (Figure 3 (a)). This result is expected as both algorithms
are statistically-based, and hence their performance relies largely on the data size.
When the training data size is very small , both algorithms perform poorly. However,
as the data size increases, HM-MDP Baum-Welch improves substantially faster than
POMDP Baum-Welch. It is because an HM-MDP in general consists of fewer free

992

"

o ~~~~~~~~~~~~~~
o !SOO 1000 1501) 2000 2&00)000 :1500 oKIOO .&500 5000

Wndow9tD

(a) Error in transition function

s. P M Choi. D.-y' Yeung and N. L. Zhang

'0000

............

-.----.".~ ..

/---.-.-.. -.... -----.-.. ~ ... --.... --...

10500L--' OOOJ...--'..."500-2000~~ ,,---:"_':::"--=_.,.,.......-:-""':':-:--,,,...,---:-!,OOO

WIndowSiz.

(b) Required learning time

Figure 3: Empirical results on model learning

parameters than its POMDP counterpart.

HM-MDP Baum-Welch also runs much faster than POMDP Baum-Welch (Figure 3
(b)). It holds in general for the same reason discussed above. Note that compu
tational time is not necessarily monotonically increasing with the data size. It is
because the total computation depends not only on the data size, but also on the
number of iterations executed. From our experiments, we noticed that the number
of iterations tends to decrease as the data size increases.

Larger models have also been tested. While HM-MDP Baum-Welch is able to learn
models with several hundred states and a few modes, POMDP Baum-Welch was
unable to complete the learning in a reasonable time. Additional experimental
results can be found in [1].

5 Discussions and Future Work

The usefulness of a model depends on the validity of the assumptions made. We
now discuss the assumptions of HM-MDP, and shed some light on its applicability
to real-world nonstationary tasks. Some possible extensions are also discussed.

Modeling a nonstationary environment as a number of distinct MDPs.
MDP is a flexible framework that has been widely adopted in various applications.
Modeling nonstationary environments by distinct MDPs is a natural extension to
those tasks. Comparing to POMDP, our model is more comprehensive: each MDP
naturally describes a mode of the environment. Moreover, this formulation facili
tates the incorporation of prior knowledge into the model initialization step.

States are directly observable while modes are not. While completely ob
servable states are helpful to infer the current mode, it is also possible to extend the
model to allow partially observable states. In this case, the extended model would
be equivalent in representational power to a POMDP. This could be proved easily
by showing the reformulation of the two models in both directions.

An Environment Model for Nonstationary Reinforcement Learning 993

Mode changes are independent of the agent's responses. This property
may not always hold for all real-world tasks. In some applications, the agent's
actions might affect the state as well as the environment mode. In that case, an
MDP should be used to govern the mode transition process.

Mode transitions are relatively infrequent. This is a property that generally
holds in many applications. Our model, however, is not limited by this condition.
We have tried to apply our model-learning algorithms to problems in which this
property does not hold. We find that our model still outperforms POMDP, although
the required data size is typically larger for both models.

Number of states is substantially larger than the number of modes. This
is the key property that significantly reduces the number of parameters in HM-MDP
compared to that in POMDP. In practice, introduction of a few modes is sufficient
for boosting the system performance. More modes might only help little. Thus a
trade-off between performance and response time must be decided.

There are additional issues that need to be addressed. First, an efficient algorithm
for policy learning is required. Although in principle it can be achieved indirectly
via any POMDP algorithm, a more efficient algorithm based on the model-based
approach is possible. We will address this issue in a separate paper. Next, the
number of modes is currently assumed to be known. We are now investigating how
to remove this limitation. Finally, the exploration-exploitation issue is currently
ignored. In our future work, we will address this important issue and apply our
model to real-world nonstationary tasks.

References

[1] S. P. M. Choi, D. Y. Yeung, and N. L. Zhang. Hidden-mode Markov decision
processes. In IJCAI 99 Workshop on Neural, Symbolic, and Reinforcement
Methods for Sequence Learnin9, 1999.

[2] L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In AAAI-92, 1992.

[3] R. H. Crites and A. G. Barto. Improving elevator performance using reinforce
ment learning. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances
in Neural Information Processing Systems 8, 1996.

[4] P. Dayan and T. J. Sejnowski. Exploration bonuses and dual control. Machine
Learning, 25(1):5- 22, Oct. 1996.

[5J S. Kullback. Information Theory and Statistics. Wiley, New York, NY, USA,
1959.

[6] S. Singh and D. P. Bertsekas. Reinforcement learning for dynamic channel
allocation in cellular telephone systems. In Advances in Neural Information
Processing Systems 9, 1997.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, 1998.

