
Differentiating Functions of the Jacobian
with Respect to the Weights

Gary William Flake
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

jiake@research.nj.nec.com

Barak A. Pearlmutter
Dept of Computer Science, FEC 313

University of New Mexico
Albuquerque, NM 87131

bap@cs.unm.edu

Abstract

For many problems, the correct behavior of a model depends not only on
its input-output mapping but also on properties of its Jacobian matrix, the
matrix of partial derivatives of the model's outputs with respect to its in
puts. We introduce the J-prop algorithm, an efficient general method for
computing the exact partial derivatives of a variety of simple functions of
the Jacobian of a model with respect to its free parameters. The algorithm
applies to any parametrized feedforward model, including nonlinear re
gression, multilayer perceptrons, and radial basis function networks.

1 Introduction

Let f (x, w) be an n input, m output, twice differentiable feedforward model parameterized
by an input vector, x, and a weight vector w. Its Jacobian matrix is defined as

[
~
()xl

J= :
aim
aXI

~l a~" = df(x, w) .

aim dx
ax"

The algorithm we introduce can be used to optimize functions of the form

or
1 2

Ev(w) = 211Jv - bll

(1)

(2)

where u, v, a, and b are user-defined constants. Our algorithm, which we call J-prop,
can be used to calculate the exact value of both a Eu / aw or a Ev / aw in 0 (1) times the
time required to calculate the normal gradient. Thus, I-prop is suitable for training models
to have specific first derivatives, or for implementing several other well-known algorithms
such as Double Backpropagation [1] and Tangent Prop [2].

Clearly, being able to optimize Equations 1 and 2 is useful; however, we suspect that the
formalism which we use to derive our algorithm is actually more interesting because it
allows us to modify J-prop to easily be applicable to a wide-variety of model types and

436 G. W. Flake and B. A. Pear/mutter

objective functions. As such, we spend a fair portion of this paper describing the mathe
matical framework from which we later build J-prop.

This paper is divided into four more sections. Section 2 contains background information
and motivation for why optimizing the properties of the Jacobian is an important problem.
Section 3 introduces our formalism and contains the derivation of the J-prop algorithm.
Section 4 contains a brief numerical example of J-prop. And, finally, Section 5 describes
further work and gives our conclusions.

2 Background and motivation

Previous work concerning the modeling of an unknown function and its derivatives can be
divided into works that are descriptive or prescriptive. Perhaps the best known descriptive
result is due to White et al. [3,4], who show that given noise-free data, a multilayer percep
tron (MLP) can approximate the higher derivatives of an unknown function in the limit as
the number of training points goes to infinity. The difficulty with applying this result is the
strong requirements on the amount and integrity of the training data; requirements which
are rarely met in practice. This problem was specifically demonstrated by Principe, Rathie
and Kuo [5] and Deco and Schiirmann [6], who showed that using noisy training data from
chaotic systems can lead to models that are accurate in the input-output sense, but inaccu
rate in their estimates of quantities related to the Jacobian of the unknown system, such as
the largest Lyapunov exponent and the correlation dimension.

MLPs are particularly problematic because large weights can lead to saturation at a particu
lar sigmoidal neuron which, in tum, results in extremely large first derivatives at the neuron
when evaluated near the center of the sigmoid transition. Several methods to combat this
type of over-fitting have been proposed. One of the earliest methods, weight decay [7],
uses a penalty term on the magnitude of the weights. Weight decay is arguably optimal
for models in which the output is linear in the weights because minimizing the magnitude
of the weights is equivalent to minimizing the magnitude of the model's first derivatives.
However, in the nonlinear case, weight decay can have suboptimal performance [1] be
cause large (or small) weights do not always correspond to having large (or small) first
derivatives.

The Double Backpropagation algorithm [1] adds an additional penalty term to the error
function equal to II a E / ax 112. Training on this function results in a form of regularization
that is in many ways an elegant combination of weight decay and training with noise: it is
strictly analytic (unlike training with noise) but it explicitly penalizes large first derivatives
ofthe model (unlike weight decay). Double Backpropagation can be seen as a special case
of J-prop, the algorithm derived in this paper.

As to the general problem of coercing the first derivatives of a model to specific values,
Simard, et at., [2] introduced the Tangent Prop algorithm, which was used to train MLPs
for optical character recognition to be insensitive to small affine transformations in the
character space. Tangent Prop can also be considered a special case of J-prop.

3 Derivation

We now define a formalism under which J-prop can be easily derived. The method is
very similar to a technique introduced by Pearlmutter [8] for calculating the product of the
Hessian of an MLP and an arbitrary vector. However, where Pearlmutter used differential
operators applied to a model's weight space, we use differential operators defined with
respect to a model's input space.

Our entire derivation is presented in five steps. First, we will define an auxiliary error

Differentiating Functions of the Jacobian 437

function that has a few useful mathematical properties that simplify the derivation. Next,
we will define a special differential operator that can be applied to both the auxiliary error
function, and its gradient with respect to the weights. We will then see that the result of
applying the differential operator to the gradient of the auxiliary error function is equivalent
to analytically calculating the derivatives required to optimize Equations 1 and 2. We then
show an example of the technique applied to an MLP. Finally, in the last step, the complete
algorithm is presented.

To avoid confusion, when referring to generic data-driven models, the model will always be
expressed as a vector function y = f (x, w), where x refers to the model input and w refers
to a vector of all of the tunable parameters of the model. In this way, we can talk about
models while ignoring the mechanics of how the models work internally. Complementary
to the generic vector notation, the notation for an MLP uses only scalar symbols; however,
these symbols must refer to internal variable of the model (e.g., neuron thresholds, net
inputs, weights, etc.), which can lead to some ambiguity. To be clear, when using vector
notation, the input and output of an MLP will always be denoted by x and y, respectively,
and the collection of all of the weights (including biases) map to the vector w. However,
when using scalar arithmetic, the scalar notation for MLPs will apply.

3.1 Auxiliary error function

Our auxiliary error function, E, is defined as

- T E(x, w) = u f(x, w). (3)

Note that we never actually optimize with respect E; we define it only because it has the
property that aE/ax = u T J, which will be useful to the derivation shortly. Note that
a E / ax appears in the Taylor expansion of E about a point in input space:

-T

E(x + Ax, w) = E(x, w) + ~! Ax + 0 (1IAXI12) . (4)

Thus, while holding the weights, w, fixed and letting Ax be a perturbation of the input, x,
Equation 4 characterizes how small changes in the input of the model change the value of
the auxiliary error function.

Be setting Ax = rv, with v being an arbitrary vector and r being a small value, we can
rearrange Equation 4 into the form:

~ [E(x+rv,w) -E(x,w)] +O(r)

1 [- -] lim - E(x + rv, w) - E(x, w)
r~O r

a - I aE(x + rv,w) .
r r=O

(5)

This final expression will allow us to define the differential operator in the next subsection.

3.2 Differential operator

Let h(x, w) be an arbitrary twice differentiable function. We define the differentiable
operator

(6)

438 G. W Flake and B. A. Pearlmutter

which has the property that Rv{E(x, w)} = u T Jv. Being a differential operator, Rv{-}
obeys all of the standard rules for differentiation:

Rv{c}
Rv{ c· h(x, w)}

Rv{h(x,w) + g(x,w)}
Rv{h(x, w) . g(x, w)}

Rv{h(g(x, w), w)}

Rv{!h(X,W) }

o
= c· Rv{h(x, w)}

Rv{ h(x, w)} + Rv{g(x, w)}
Rv{h(x,w)}· g(x,w) + h(x,w)· Rv{g(x,w)}
h'(g(x,w))· Rv{g(x,w)}

d
dt Rv{h(x, w)}

The operator also yields the identity Rv{ x} = v.

3.3 Equivalence

We will now see that the result of calculating Rv{ a E / aw} can be used to calculate both
aEu/aw and aEv/aw. Note that Equations 3-5 all assume that both u and v are in
dependent of x and w. To calculate aEu/aw and aEv/aw, we will actually set u or
v to a value that depends on both x and w; however, the derivation still works because
our choices are explicitly made in such a way that the chain rule of differentiation is not
supposed to be applied to these terms. Hence, the correct analytical solution is obtained
despite the dependence.

To optimize with respect to Equation 1, we use:

a 1 II T 112 (au T J) T T { a E } aw'2 J u - a = ~ (J u - a) = Rv aw ' (7)

with v = (JT U - a). To optimize with respect to Equation 2, we use:

~! IIJv - bll 2 = (Jv _ b)T (aJv) = Rv{ aE} ,
aw2 aw aw

(8)

with u = (Jv - b).

3.4 Method applied to MLPs

We are now ready to see how this technique can be applied to a specific type of model.
Consider an MLP with L + 1 layers of nodes defined by the equations:

y~ = g(x~) (9)
N/

Xl
t

L 1-1 I ri Yj Wij - i' (10)
j

In these equations, superscripts denote the layer number (starting at 0), subscripts index
over terms in a particular layer, and NI is the number of input nodes in layer l . Thus, y~ is
the output of neuron i at node layer l, and xi is the net input coming into the same neuron.
Moreover, yf is an output of the entire MLP while y? is an input going into the MLP.

The feedback equations calculated with respect to E are:

aE
ayf

(11)

Differentiating Functions of the Jacobian

8E
8y~

8E
8x' t
8E
8w!j

8E
8()!

J

8E
8x l '

t

439

(12)

(13)

(14)

(15)

where the Ui term is a component in the vector u from Equation 1. Applying the Rv {·}

operator to the feedforward equations yields:

Rv{Y?}

Rv{yD

Rv{ x~}

g'(x~)Rv{ xD (for 1 > 0)
N/

L Rv{y~-l } W~j'
j

(16)

(17)

(18)

where the Vi term is a component in the vector v from Equation 2. As the final step, we
apply the Rv {·} operator to the feedback equations, which yields:

Rv{:~ }
Rv{ :~}

Rv{ :~}
Rv{ :!,}
Rv{ ::;}

3.5 Complete algorithm

o (19)

(20)

(21)

(22)

(23)

Implementing this algorithm is nearly as simple as implementing normal gradient descent.
For each type of variable that is used in an MLP (net input, neuron output, weights, thresh
olds, partial derivatives, etc.), we require that an extra variable be allocated to hold the
result of applying the Rv{·} operator to the original variable. With this change in place, the
complete algorithm to compute 8Eu /8w is as follows :

• Set u and a to the user specified vectors from Equation 1.

• Set the MLP inputs to the value of x that J is to be evaluated at.

• Perform a normal feedforward pass using Equations 9 and 10.

• Set 8E/8yf to Ui.

440 G. W. Flake and B. A. Pearlmutter

(a) (b)

Figure 1: Learning only the derivative: showing (a) poor approximation of the function
with (b) excellent approximation of the derivative.

• Perform the feedback pass with Equations 11-15. Note that values in the aEjay?
terms are now equal to JT U.

• Set v to (JT u - a)

• Perform a Rv{ .} forward pass with Equations 16-18.

• Set the Rv{ 8Ej8yf} terms to O.

• Perform a Rv{·} backward pass with Equations 19-23.

After the last step, the values in the Rv{ 8E j 8w!j} and Rv{ 8 E j aeD terms contain the
required result. It is important to note that the time complexity of the "J·forward" and "J.
backward" calculations are nearly identical to the typical output and gradient evaluations
(i.e., the "forward" and "backward" passes) of the models used.

A similar technique can be used for calculating 8Evj8w. The main difference is that the
Rv{ . } forward pass is performed between the normal forward and backward passes because
u can only be determined after the Rv{ f (z, w)} has been calculated.

4 Experimental results

To demonstrate the effectiveness and generality of the J-prop algorithm, we have imple
mented it on top of an existing neural network library [9] in such a way that the algorithm
can be used on a large number of architectures, including MLPs, radial basis function net·
works, and higher order networks.

We trained an MLP with ten hidden tanh nodes on 100 points with conjugate gradient. The
training exemplars consisted of inputs in [-1, 1] and a target derivative from 3 cos(3x) +
5cos(lOx). Our unknown function (which the MLP never sees data from) is sin(3x) +
l sin(lOx). The model quickly converges to a solution in approximately 100 iterations.

Figure 1 shows the performance of the MLP. Having never seen data from the unknown
function, the MLP yields a poor approximation of the function, but a very accurate approx
imation of the function's derivative. We could have trained on both outputs and derivatives,
but our goal was to illustrate that J·prop can target derivatives alone.

Differentiating Functions of the Jacobian 441

5 Conclusions

We have introduced a general method for calculating the weight gradient of functions of
the Jacobian matrix of feedforward nonlinear systems. The method can be easily applied to
most nonlinear models in common use today. The resulting algorithm, J-prop, can be easily
modified to minimize functionals from several application domains [10]. Some possible
uses include: targeting known first derivatives, implementing Tangent Prop and Double
Backpropagation, enforcing identical VO sensitivities in auto-encoders, deflating the largest
eigenvalue and minimizing all eigenvalue bounds, optimizing the determinant for blind
source separation, and building nonlinear controllers.

While some special cases of the J-prop algorithm have already been studied, a great deal
is unknown about how optimization of the Jacobian changes the overall optimization prob
lem. Some anecdotal evidence seems to imply that optimization of the Jacobian can lead to
better generalization and faster training. It remains to be seen if J-prop used on a nonlinear
extension of linear methods will lead to superior solutions.

Acknowledgements

We thank Frans Coetzee, Yannis Kevrekidis, Joe O'Ruanaidh, Lucas Parra, Scott Rickard,
Justinian Rosca, and Patrice Simard for helpful discussions. GWF would also like to thank
Eric Baum and the NEC Research Institute for funding the time to write up these results.

References

[1] H. Drucker and Y. Le Cun. Improving generalization performance using double back
propagation. IEEE Transactions on Neural Networks, 3(6), November 1992.

[2] P. Simard, B. Victorri, Y. Le Cun, and J. Denker. Tangent prop-A formalism for
specifying selected invariances in an adaptive network. In John E. Moody, Steve J.
Hanson, and Richard P. Lippmann, editors, Advances in Neural Information Process
ing Systems, volume 4, pages 895-903. Morgan Kaufmann Publishers, Inc., 1992.

[3] H. White and A. R. Gallant. On learning the derivatives of an unknown mapping
with multilayer feedforward networks. In Halbert White, editor, Artificial Neural
Networks, chapter 12, pages 206-223. Blackwell, Cambridge, Mass., 1992.

[4] H. White, K. Hornik, and M. Stinchcombe. Universal approximation of an unknown
mapping and its derivative. In Halbert White, editor, Artificial Neural Networks,
chapter 6, pages 55-77. Blackwell, Cambridge, Mass., 1992.

[5] J. Principe, A. Rathie, and J. Kuo. Prediction of chaotic time series with neural
networks and the issues of dynamic modeling. Bifurcations and Chaos, 2(4), 1992.

[6] G. Deco and B. Schiirmann. Dynamic modeling of chaotic time series. In Russell
Greiner, Thomas Petsche, and Stephen Jose Hanson, editors, Computational Learn
ing Theory and Natural Learning Systems, volume IV of Making Learning Systems
Practical, chapter 9, pages 137-153. The MIT Press, Cambridge, Mass., 1997.

[7] G. E. Hinton. Learning distributed representations of concepts. In Proc. Eigth Annual
Con! Cognitive Science Society, pages 1-12, Hillsdale, NJ, 1986. Erlbaum.

[8] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,
6(1):147-160,1994.

[9] G. W. Flake. Industrial strength modeling tools. Submitted to NIPS 99, 1999.

[10] G. W. Flake and B. A. Pearl mutter. Optimizing properties of the Jacobian of nonlinear
feedforward systems. In preperation, 1999.

