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Abstract 

In the analysis of data recorded by optical imaging from intrinsic signals 
(measurement of changes of light reflectance from cortical tissue) the re­
moval of noise and artifacts such as blood vessel patterns is a serious 
problem. Often bandpass filtering is used, but the underlying assumption 
that a spatial frequency exists, which separates the mapping component 
from other components (especially the global signal), is questionable. 
Here we propose alternative ways of processing optical imaging data, us­
ing blind source separation techniques based on the spatial decorre1ation 
of the data. We first perform benchmarks on artificial data in order to 
select the way of processing, which is most robust with respect to sen­
sor noise. We then apply it to recordings of optical imaging experiments 
from macaque primary visual cortex. We show that our BSS technique is 
able to extract ocular dominance and orientation preference maps from 
single condition stacks, for data, where standard post-processing pro­
cedures fail. Artifacts, especially blood vessel patterns, can often be 
completely removed from the maps. In summary, our method for blind 
source separation using extended spatial decorrelation is a superior tech­
nique for the analysis of optical recording data. 

1 Introduction 

One approach in the attempt of comprehending how the human brain works is the analysis 
of neural activation patterns in the brain for different stimuli presented to a sensory system. 
An example is the extraction of ocular dominance or orientation preference maps from 
recordings of activity of neurons in the primary visual cortex of mammals. A common 
technique for extracting such maps is optical imaging (01) of intrinsic signals. Currently 
this is the imaging technique with the highest spatial resolution (~ 100 J1m) for mapping of 
the cortex. This method is explained e.g. in [1], for similar methods using voltage sensitive 
dyes see [2, 3] . 01 uses changes in light reflection to estimate spatial patterns of stimulus 



950 H. Sch6ner. M Stetter. I. Schiej3l, J E. Mayhew, J Lund, N. Mcloughlin and K. Obermayer 

answers. The overall change recorded by a CCD or video camera is the total signal. The 
part of the total signal due to local neural activity is called the mapping component and it 
derives from changes in deoxyhemoglobin absorption and light scattering properties of the 
tissue. Another component of the total signal is a "global" component, which is also cor­
related with stimulus presentation, but has a much coarser spatial re~olution . It derives its 
part from changes in the blood volume with the time. Other components are blood vessel 
artifacts, the vasomotor signal (slow oscillations of neural activity), and ongoing activity 
(spontaneous, stimulus-uncorrelated activity). Problematic for the extraction of activity 
maps are especially blood vessel artifacts and sensor noise, such as photon shot noise. A 
procedure often used for extracting the activity maps from the recordings is bandpass fil­
tering, after preprocessing by temporal , spatial , and trial averaging. Lowpass filtering is 
unproblematic, as the spatial resolution of the mapping signal is limited by the scattering 
properties of the brain tissue, hence everything above a limiting frequency must be noise. 
The motivation for highpass filtering, on the other hand, is questionable as there is no spe­
cific spatial frequency separating local neural activity patterns and the global signal [4]). 

A different approach, Blind Source Separation (BSS), models the components of the 
recorded image frames as independent sources, and the observations (recorded image 
frames) as noisy linear mixtures of the unknown sources. After performing the BSS the 
mapping component should ideally be concentrated in one estimated source, the global 
signal in another, and blood vessel artifacts, etc. in further ones. Previous work ([5]) has 
shown that BSS algorithms, which are based on higher order statistics ([6, 7, 8]), fail for 
optical imaging data, because of the high signal to noise ratio. 

In this work we suggest and investigate versions of the M&S algorithm [9, 10], which are 
robust against sensor noise, and we analyze their performance on artificial as well as real 
optical recording data. In section 2 we describe an improved algorithm, which we later 
compare to other methods in section 3. There an artificial data set is used for the analysis 
of noise robustness, and benchmark results are presented. Then, in section 4, it is shown 
that the newly developed algorithm is very well able to separate the different components 
of the optical imaging data, for ocular dominance as well as orientation preference data 
from monkey striate cortex. Finally, section 5 provides conclusions and perspectives for 
future work. 

2 Second order blind source separation 

Let m be the number of mixtures and r the sample index, i.e. a vector specifying a pixel in 
the recorded images. The observation vectors y(r) = (Y1(r) , ... ,Ym¥')f are assumed 
to be linear mixtures of m unknown sources s(r) = (Sl (r) , . . . ,Sm (r)) with A being the 
m x m mixing matrix and n describing the sensor noise: 

y(r) = As(r) + n (1) 

The goal of BSS is to obtain optimal source estimates s(r) under the assumption that the 
original sources are independent. In the noiseless case W = A -1 would be the optimal 
demixing matrix. In the noisy case, however, W also has to compensate for the added 
noise: s(r) == Wy(r) = W . A . s(r) + W . n. BSS algorithms are generally only able to 
recover the original sources up to a permutation and scaling. 

Extended Spatial Decorrelation (ESD) uses the second order statistics of the observa­
tions to find the source estimates. If sources are statistical independent all source cross­
correlations 

Ci(,~) (D.r) = (si (r)Sj(r+ D.r))r = ~ LSi(r)Sj(r+ D.r) , i =F j (2) 
r 
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must vanish for all shifts ~r, while the autocorrelations (i = j) of the sources remain (the 
variances). Note that this implies that the sources must be spatially smooth. 

Motivated by [to] we propose to optimize the cost function, which is the sum of the 
squared cross-correlations of the estimated sources over a set of shifts {~r}, 

E(W) = L L ((WC(~r)WT)i,jr (3) 
6r i~j 

= L L\Si(r)Sj(r + ~r))~ , 
6r itj 

with respect to the demixing matrix W. The matrix Ci,j(~r) = (Yi (r)Yj(r + ~r))r de­
notes the mixture cross-correlations for a shift ~r. This cost function is minimized using 
the Polak Ribiere Conjugate Gradient technique, where the line search is substituted by a 
dynamic step width adaptation ([11]). To keep the demixing matrix W from converging to 
the zero matrix, we introduce a constraint which keeps the diagonal elements of T = W-l 
(in the noiseless case and for non-sphered data T is an estimate of the mixing matrix, with 
possible permutations) at a value of 1.0. Convergence properties are improved by sphering 
the data (transforming their correlation matrix for shift zero to an identity matrix) prior to 
decorrelating the mixtures. 

Note that use of multiple shifts ~r allows to use more information about the auto- and 
cross-correlation structure of the mixtures for the separation process. Two shifts provide 
just enough constraints for a unique solution ([to]). Multiple shifts, and the redundancy 
they introduce, additionally allow to cancel out part of the noise by approximate simulta­
neous diagonalization of the corresponding cross correlation matrices. 

In the presence of sensor noise, added after mixing, the standard sphering technique is 
problematic. When calculating the zero-shift cross-correlation matrix the variance of the 
noise contaminates the result, and sphering using a shifted cross-correlation matrix, is rec­
ommended ([12]). For spatially white sensor noise and sources with reasonable auto cor­
relations this technique is more appropriate. In the following we denote the standard algo­
rithm by dpaO, and the variant using noise robust sphering by dpa1. 

3 Benchmarks for artificial data 

The artificial data set used here, whose sources are approximately uncorrelated for all 
shifts, is shown in the left part of figure 1. The mixtures were produced by generating a 
random mixing matrix (in this case with condition number 3.73), applying it to the sources, 
and finally adding white noise of different variances. 

In order to measure the performance on the artificial data set we measure a reconstruction 
error (RE) between the estimated and the correct sources via (see [l3]): 

RE(W) = od(L §(r)sT(r)) , 
r 

1 ~ 1 ( IC· ·1 ) 
od(C) = N ~ N _ 1 L maXk'I~i , kl - 1 

I J 

(4) 

The correlation between the real and the estimated sources (the argument to "od"), should 
be close to a permutation matrix, if the separation is successful. If the maxima of two rows 
are in the same column, the separation is labeled unsuccessful. Otherwise, the normalized 
absolute sum of non-permutation (cross-correlation) elements is computed and returned as 
the reconstruction error. 

We now compare the method based on optimization of (3) by gradient descent with the fol­
lowing variants of second order blind source separation: (1) standard spatial decorrelation 
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Figure 1: The set of three approximately uncorrelated source images of the artificial data 
set (left) . The two plots (middle, right) show the reconstruction error versus signal to noise 
ratio for different separation algorithms. In the right plot jac1 and dpa1 are very close 
together. 

using the optimal single shift yielding the smallest reconstruction error (opt). (2) Spatial 
decorrelation using the shift selected by 

norm (C(.6.r) - diag (C(.6.r))) 
.6.rcor = argmax{.D.r} norm (diag (C(.6.r)))·' (5) 

where "diag" sets all off-diagonal elements of its argument matrix to zero, and "norm" 
computes the largest singular value of its argument matrix (cor). .6.rcor is the shift for 
which the cross correlations are largest, i.e. whose signal to noise ratio (SNR) should be 
best. (3) Standard spatial decorrelation using the average reconstruction error for all suc­
cessful shifts in a 61 x 61 square around the zero shift (mean). (4) A multi-shift algorithm 
([12]), using several elementary rotations (Jacobi method) to build an orthogonal demixing 
matrix, which optimizes the cost function (3). The variants using standard sphering and 
noise robust sphering are denoted by dacO) and dac1). cor, opt, and mean use two shifts 
for their computation; but as one of those is always the zero-shift, there is only one shift to 
choose and they are called single-shift algorithms here. 

Figure 1 gives two plots which show the reconstruction error (4) versus the SNR (mea­
sured in dB) for single shift (middle) and multi-shift (right) algorithms. The error bars 
indicate twice the standard error of the mean (2x SEM), for 10 runs with the same mix­
ing matrix, but newly generated noise of the given noise level. In each of these runs, the 
best result of three was selected for the gradient descent method. This is because, con­
trary to the other algorithms, the gradient descent algorithm depends on the initial choice 
of the demixing matrix. All multi-shift algorithms (all except opt and mean), used 8 shifts 
(±r, ±r), (±r, 0), and (0, ±r) for each r E {I, 3, 5, 10,20, 30}, so 48 all together. 

Several points are noticeable in the plots. (i) The cor algorithm is generally closer to the 
optimum than to the average successful shift. (ii) A comparison between the two plots 
shows that the multi-shift algorithms (right plot) are able to perform much better than even 
the optimal single-shift method. For low to medium noise levels this is even the case when 
using the standard sphering method combined with the gradient descent algorithm. (iii) 
The advantage of the noise robust sphering method, compared to the standard sphering, 
is obvious: the reconstruction error stays very low for all evaluated noise levels, for both 
the jac1 and dpa1 algoritlnns. (iv) The gradient descent technique is more robust than the 
Jacobi method For the standard sphering its performance is much better than that of the 
Jacobi method. 

Figure 1 shows results which were produced using a single mixing matrix. However, our 
simulations show that the algorithms compare qualitatively similar when using mixing ma-
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t = 1 sec. t = 2 sec. t = 3 sec. t = 4 sec. t = 5 sec. t = 6 sec. t = 7 sec. 

Figure 2: Optical imaging stacks. The top stack is a single condition stack from ocular 
dominance experiments, the lower one a difference stack from orientation preference ex­
periments (images for 90° gratings subtracted from those for 0° gratings). The stimulus 
was present during recording images 2-7 in each row. Two large blood vessels in the top 
and left regions of the raw images were masked out prior to the analysis. 

trices with condition numbers between 2 and 10. The noise robust versions of the multi­
shift algorithms generally yield the best separation results of all evaluated algorithms. 

4 Application to optical imaging 

We now apply extended spatial decorrelation to the analysis of optical imaging data. The 
data consists of recordings from the primary visual cortex of macaque monkeys. Each trial 
lasted 8 seconds, which were recorded with frame rates of 15 frames per second. A visual 
stimulus (a drifting bar grating of varying orientation) was presented between seconds 2 
and 8. Trials were separated by a recovery period of 15 seconds without stimulation. The 
cortex was illuminated at a wavelength of 633 nm. One pixel corresponds to about 15 J.Lm 
on the cortex; the image stacks used for further processing, consisting of 256 x 256 pixels, 
covered an area of cortex of approximately 3.7 mm2 . 

Blocks of 15 consecutive frames were averaged, and averaging over 8 trials using the same 
visual stimulus further improved the SNR. First frame analysis (subtraction of the first, 
blank, frame from the others) was then applied to the resulting stack of 8 frames, fol­
lowed by lowpass filtering with 14 cycles/mm. Figure 2 shows the resulting image stacks 
for an ocular dominance and an orientation preference experiment. One observes strong 
blood vessel artifacts (particularly in the top row of images), which are superimposed to 
the patchy mapping component that pops up over time. 

Figure 3 shows results obtained by the application of extended spatial decorrelation (using 
dpaO). Only those estimated sources containing patterns different from white noise are 
shown. Backprojection of the estimated sources onto the original image stack yields the 
amplitude time series of the estimated sources, which is very useful in selecting the map­
ping component: it can be present in the recordings only after the stimulus onset (starting 
at t = 2 sec.). The middle part shows four estimated sources for the ocular dominance 
single condition stack. The mapping component (first image) is separated from the global 
component (second image) and blood vessel artifacts (second to fourth) quite well. The 
time course of the mapping component is plausible as well: calculation of a plausibility 
index (sum of squared differences between the normalized time series and a step function, 
which is 0 before and 1 after the stimulus onset) gives 0.5 for the mapping component and 
2.31 for the next best one. Results for the gradient descent algorithm are similar for this 
data set, regardless of the sphering technique used. The Jacobi method also gives simi­
lar results, but a small blood vessel artifact is remaining in the resulting map. The cor 
algorithm usually gives much worse separation results. In the right part of figure 3 two es-
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Figure 3: Left: Summation technique for ocular dominance (aD) experiment (upper) and 
orientation preference (OP) experiment (lower). Middle, Right: dpaO algorithm applied 
to the same aD single condition (middle) and OP (right) stacks. The images show the 4 
(aD) and 2 (OP) estimated components, which are visually different from white noise. In 
the bottom row the respective time courses of the estimated sources are given. 

timated sources (those different from white noise) for the orientation preference difference 
stack can be seen. Here the proposed algorithm (dpaO) again works very well (plausibility 
index is 0.56 for mapping component, compared to 3.04 for the best other component). It 
generally has to be applied a few times (usually around 3 times) to select the best separa­
tion result Uudging by visual quality of the separation and the time courses of the estimated 
sources), because of its dependence on parameter initialization; in return it yields the best 
results of all algorithms used, especially when compared to the traditional summation tech­
nique. 

The similar results when using standard and noise robust sphering, and the small differ­
ences between the gradient descent and the Jacobi algorithms indicate, that not sensor noise 
is the limiting factor for the quality of the extracted maps. Instead it seems that, assuming 
a linear mixing model, no better results can be obtained from the used image stacks. It 
will remain for further research to analyze, how appropriate the linear mixing model is, 
and whether the underlying biophysical components are sufficiently uncorrelated . In the 
meantime the maps obtained by the ESD algorithm are superior to those obtained using 
conventional techniques like summation of the image stack. 

5 Conclusion 

The results presented in the previous sections show the advantages of the proposed algo­
rithm: In the comparison with other spatial decorrelation algorithms the benefit in using 
multiple shifts compared to only two shifts is demonstrated. The robustness against sen­
sor noise is improved, and in addition, the selection of multiple shifts is less critical than 
selecting a single shift, as the resulting multi-shift system of equations contains more re­
dundancy. In comparison with the Jacobi method, which is restricted to find only orthog­
onal demixing matrices, the greater tolerance of demixing by a gradient descent technique 
concerning noise and incorrect sphering are demonstrated. The application of second order 
blind separation of sources to optical imaging data shows that these techniques represent 
an important alternative to the conventional approach, bandpass filtering followed by sum­
mation of the image stack, for extraction of neural activity maps. Vessel artifacts can be 
separated from the mapping component better than using classical approaches. The spatial 
decorrelation algorithms are very well adapted to the optical imaging task, because of their 
use of spatial smoothness properties of the mapping and other biophysical components. 

An important field for future research concerning BSS algorithms is the incorporation of 
prior knowledge about sources and the mixing process, e.g. that the mixing has to be 
causal: the mapping signal cannot occur before the stimulus is presented. Assumptions 
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about the time course of signals could also be helpful, as well as knowledge about their 
spatial statistics. Smearing and scattering limit the resolution of recordings of biological 
components, and, depending on the wavelength of the light used for illumination, the map­
ping component constitutes only a certain percentage of the changes in total light reflec­
tions. 
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