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Abstract 

The nonnegative Boltzmann machine (NNBM) is a recurrent neural net­
work model that can describe multimodal nonnegative data. Application 
of maximum likelihood estimation to this model gives a learning rule that 
is analogous to the binary Boltzmann machine. We examine the utility of 
the mean field approximation for the NNBM, and describe how Monte 
Carlo sampling techniques can be used to learn its parameters. Reflec­
tive slice sampling is particularly well-suited for this distribution, and 
can efficiently be implemented to sample the distribution. We illustrate 
learning of the NNBM on a transiationally invariant distribution, as well 
as on a generative model for images of human faces. 

Introduction 

The multivariate Gaussian is the most elementary distribution used to model generic da­
ta. It represents the maximum entropy distribution under the constraint that the mean and 
covariance matrix of the distribution match that of the data. For the case of binary data, 
the maximum entropy distribution that matches the first and second order statistics of the 
data is given by the Boltzmann machine [1]. The probability of a particular state in the 
Boltzmann machine is given by the exponential form: 

P({Si = ±1}) = ~ exp (-~ L.siAijSj + ~bi Si) . 
t J t 

(1) 

Interpreting Eq. 1 as a neural network, the parameters A ij represent symmetric, recurrent 
weights between the different units in the network, and bi represent local biases. Unfortu­
nately, these parameters are not simply related to the observed mean and covariance of the 
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Figure 1: a) Probability density and b) shaded contour plot of a two dimensional competi­
tive NNBM distribution. The energy function E (x) for this distribution contains a saddle 
point and two local minima, which generates the observed multimodal distribution. 

data as they are for the normal Gaussian. Instead, they need to be adapted using an iterative 
learning rule that involves difficult sampling from the binary distribution [2]. 

The Boltzmann machine can also be generalized to continuous and nonnegative variables. 
In this case, the maximum entropy distribution for nonnegative data with known first and 
second order statistics is described by a distribution previously called the "rectified Gaus­
sian" distribution [3]: 

p(x) = {texP[-E(X)] if Xi 2:: O'v'i, 
o if any Xi <0, 

where the energy function E (x) and normalization constant Z are: 

E(x) 

Z 

_ ~xT Ax -bTx 
2 ' 

r dx exp[-E(x)]. 
Il:?o 

(2) 

(3) 

(4) 

The properties of this nonnegative Boltzmann machine (NNBM) distribution differ quite 
substantially from that of the normal Gaussian. In particular, the presence of the nonnega­
tivity constraints allows the distribution to have multiple modes. For example, Fig. 1 shows 
a two-dimensional NNBM distribution with two separate maxima located against the rec­
tifying axes. Such a multimodal distribution would be poorly modelled by a single normal 
Gaussian. 

In this submission, we discuss how a multimodal NNBM distribution can be learned from 
nonnegative data. We show the limitations of mean field approximations for this distribu­
tion, and illustrate how recent developments in efficient sampling techniques for continuous 
belief networks can be used to tune the weights of the network [4]. Specific examples of 
learning are demonstrated on a translationally invariant distribution, as well as on a gener­
ative model for face images. 

Maximum Likelihood 

The learning rule for the NNBM can be derived by maximizing the log likelihood of the 
observed data under Eq. 2. Given a set of nonnegative vectors {xJt }, where J-L = l..M 
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indexes the different examples, the log likelihood is: 

1 M 1 M 

L= M LlogP(xJL ) = - M LE(xJL) -logZ. 
Jl=l JL=l 

(5) 

Taking the derivatives ofEq. 5 with respect to the parameters A and b gives: 

aL 
(6) 

(7) 

where the subscript "c" denotes a "clamped" average over the data, and the subscript "f" 
denotes a "free" average over the NNBM distribution: 

M 

~ Lf(xJL) 
JL=l 

(f(x))c (8) 

(f(x))r = 1"2
0 

dx P(x)f(x). (9) 

These derivatives are used to define a gradient ascent learning rule for the NNBM that is 
similar to that of the binary Boltzmann machine. The contrast between the clamped and 
free covariance matrix is used to update the iteractions A, while the difference between the 
clamped and free means is used to update the local biases b. 

Mean field approximation 

The major difficulty with this learning algorithm lies in evaluating the averages (XiXj)f 
and (Xi)r. Because it is analytically intractable to calculate these free averages exactly, 
approximations are necessary for learning. Mean field approximations have previously 
been proposed as a deterministic alternative for learning in the binary Boltzmann machine, 
although there have been contrasting views on their validity [5,6]. Here, we investigate the 
utility of mean field theory for approximating the NNBM distribution. 

The mean field equations are derived by approximating the NNBM distribution in Eq. 2 
with the factorized form: 

1 1 (X.)'Y !Ei Q(x) = II Q1';(Xi) = II -- .-2. e-1';, 
. . I! 'Ti 'Ti 
~ ~ 

(10) 

where the different marginal densities Q(Xi) are characterized by the means 'Ti with a fixed 
constant I' The product of I-distributions is the natural factorizable distribution for non­
negative random variables. 

The optimal mean field parameterS'Ti are determined by minimizing the Kullback-Leibler 
divergence between the NNBM distribution and the factorized distribution: 

J [Q(X)] DKL(QIIP) = dx Q(x) log P(x) = (E(x))Q(x) + log Z - H(Q). (11) 

Finding the minimum of Eq. 11 by setting its derivatives with respect to the mean field 
parameters 'Ti to zero gives the simple mean field equations: 

A;m = h + 1) [bi - ~ Ai;T; + ~i] (12) 
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Figure 2: a) Slice sampling in one dimension. Given the current sample point, Xi, a height 
y E [0, aP(x)] is randomly chosen. This defines a slice (x E SlaP(x) ~ y) in which a 
new Xi+! is chosen. b) For a multidimensional slice S, the new point Xi+l is chosen using 
ballistic dynamics with specular reflections off the interior boundaries of the slice. 

These equations can then be solved self-consistently for Ti. The "free" statistics of the 
NNBM are then replaced by their statistics under the factorized distribution Q (x): 

(Xi}r ~ Ti, (XiXj}r ~ [h + 1)2 + (r + 1) 8ij ] TiTj. (13) 

The fidelity of this approximation is determined by how well the factorized distribution 
Q(x) models the NNBM distribution. Unfortunately, for distributions such as the one 
shown in Fig. 3, the mean field approximation is quite different from that of the true mul­
timodal NNBM distribution. This suggests that the naive mean field approximation is i­
nadequate for learning in the NNBM, and in fact attempts to use this approximation fail 
to learn the examples given in following sections. However, the mean field approximation 
can still be used to initialize the parameters to reasonable values before using the sampling 
techniques that are described below. 

Monte-Carlo sampling 

A more direct approach to calculating the "free" averages in Eq. 6-7 is to numerically ap­
proximate them. This can be accomplished by using Monte Carlo sampling to generate a 
representative set of points that sufficiently approximate the statistics of the continuous dis­
tribution. In particular, Markov chain Monte-Carlo methods employ an iterative stochastic 
dynamics whose equilibrium distribution converges to that of the desired distribution [4]. 
For the binary Boltzmann machine, such sampling dynamics involves random "spin flips" 
which change the value of a single binary component. Unfortunately, these single compo­
nent dynamics are easily caught in local energy minima, and can converge very slowly for 
large systems. This makes sampling the binary distribution very difficult, and more spe­
cialized computational techniques such as simulated annealing, cluster updates, etc., have 
been developed to try to circumvent this problem. 

For the NNBM, the use of continuous variables makes it possible to investigate different 
stochastic dynamics in order to more efficiently sample the distribution. We first experi­
mented with Gibbs sampling with ordered overrelaxation [7], but found that the required 
inversion of the error function was too computationally expensive. Instead, the recently 
developed method of slice sampling [8] seems particularly well-suited for implementation 
in the NNBM. 

The basic idea of the slice sampling algorithm is shown in Fig. 2. Given a sample point 
Xi, a random y E [0, aP(xi)] is first uniformly chosen. Then a slice S is defined as the 
connected set of points (x E S I aP(x) ~ y), and the new point Xi+l E S is chosen 
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Figure 3: Contours of the two-dimensional competitive NNBM distribution overlaid by a) 
'Y = 1 mean field approximation and b) 500 reflected slice samples. 

randomly from this slice. The distribution of Xn for large n can be shown to converge 
to the desired density P(x). Now, for the NNBM, solving the boundary points along a 
particular direction in a given slice is quite simple, since it only involves solving the roots 
of a quadratic equation. In order to efficiently choose a new point within a particular slice, 
reflective "billiard ball" dynamics are used. A random initial velocity is chosen, and the 
new point is evolved by travelling a certain distance from the current point while specularly 
reflecting from the boundaries of the slice. Intuitively, the reversibility of these reflections 
allows the dynamics to satisfy detailed balance. 

In Fig. 3, the mean field approximation and reflective slice sampling are used to mod­
el the two-dimensional competitive NNBM distribution. The poor fit of the mean field 
approximation is apparent from the unimodality of the factorized density, while the sam­
ple points from the reflective slice sampling algorithm are more representative of the un­
derlying NNBM distribution. For higher dimensional data, the mean field approximation 
becomes progressively worse. It is therefore necessary to implement the numerical slice 
sampling algorithm in order to accurately approximate the NNBM distribution. 

Translationally invariant model 

Ben-Yishai et al. have proposed a model for orientation tuning in primary visual cortex that 
can be interpreted as a cooperative NNBM distribution [9]. In the absence of visual input, 
the firing rates of N cortical neurons are described as minimizing the energy function E (x) 
with parameters: 

1 € 27r 
8ij + N - N cos( N Ii - jl) (14) 

1 

This distribution was used to test the NNBM learning algorithm. First, a large set of N = 
25 dimensional nonnegative training vectors were generated by sampling the distribution 
with (3 = 50 and € = 4. Using these samples as training data, the A and b parameters were 
learned from a unimodal initialization by evolving the training vectors using reflective slice 
sampling, and these evolved vectors were used to calculate the "free" averages in Eq. 6-7. 
The A and b estimates were then updated, and this procedure was iterated until the evolved 
averages matched that of the training data. The learned A and b parameters were then found 
to almost exactly match the original form in Eq. 14. Some representative samples from the 
learned NNBM distribution are shown in Fig. 4. 
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Figure 4: Representative samples taken from a NNBM after training to learn a translation­
ally invariant cooperative distribution with (3 = 50 and € = 4. 

b) 

Figure 5: a) Morphing of a face image by successive sampling from the learned NNBM 
distribution. b) Samples generated from a normal Gaussian. 

Generative model for faces 

We have also used the NNBM to learn a generative model for images of human faces. The 
NNBM is used to model the correlations in the coefficients of the nonnegative matrix fac­
torization (NMF) of the face images [10]. NMF reduces the dimensionality of nonnegative 
data by decomposing the face images into parts correponding to eyes, noses, ears, etc. S­
ince the different parts are coactivated in reconstructing a face, the activations of these parts 
contain significant correlations that need to be captured by a generative model. Here we 
briefly demonstrate how the NNBM is able to learn these correlations. 

Sampling from the NNBM stochastically generates coefficients which can graphically be 
displayed as face images. Fig. 5 shows some representative face images as the reflective 
slice sampling dynamics evolves the coefficients. Also displayed in the figure are the anal­
ogous images generated if a normal Gaussian is used to model the correlations instead. It 
is clear that the nonnegativity constraints and multimodal nature of the NNBM results in 
samples which are cleaner and more distinct as faces. 
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Discussion 

Here we have introduced the NNBM as a recurrent neural network model that is able to 
describe multimodal nonnegative data. Its application is made practical by the efficiency 
of the slice sampling Monte Carlo method. The learning algorithm incorporates numerical 
sampling from the NNBM distribution and is able to learn from observations of nonneg­
ative data. We have demonstrated the application of NNBM learning to a cooperative, 
translationally invariant distribution, as well as to real data from images of human faces. 

Extensions to the present work include incorporating hidden units into the recurrent net­
work. The addition of hidden units implies modelling certain higher order statistics in the 
data, and requires calculating averages over these hidden units. We anticipate the marginal 
distribution over these units to be most commonly unimodal, and hence mean field theory 
should be valid for approximating these averages. 

Another possible extension involves generalizing the NNBM to model continuous data 
confined within a certain range, i.e. 0 :s; Xi :s; 1. In this situation, slice sampling techniques 
would also be used to efficiently generate representative samples. In any case, we hope that 
this work stimulates more research into using these types of recurrent neural networks to 
model complex, multimodal data. 
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