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Abstract 

Three contributions to developing an algorithm for assisting engi­
neers in designing analog circuits are provided in this paper. First, 
a method for representing highly nonlinear and non-continuous 
analog circuits using Kirchoff current law potential functions within 
the context of a Markov field is described. Second, a relatively effi­
cient algorithm for optimizing the Markov field objective function 
is briefly described and the convergence proof is briefly sketched. 
And third, empirical results illustrating the strengths and limita­
tions of the approach are provided within the context of a JFET 
transistor design problem. The proposed algorithm generated a set 
of circuit components for the JFET circuit model that accurately 
generated the desired characteristic curves. 

1 Analog circuit design using Markov random fields 

1.1 Markov random field models 

A Markov random field (MRF) is a generalization of the concept of a Markov chain. 
In a Markov field one begins with a set of random variables and a neighborhood re­
lation which is represented by a graph. Each random variable will be assumed in 
this paper to be a discrete random variable which takes on one of a finite number 
of possible values. Each node of the graph indexs a specific random variable. A 
link from the jth node to the ith node indicates that the conditional probability 
distribution of the ith random variable in the field is functionally dependent upon 
the jth random variable. That is, random variable j is a neighbor of random vari­
able i. The only restriction upon the definition of a Markov field (Le., the positivity 
condition) is that the probability of every realization of the field is strictly posi­
tive. The essential idea behind Markov field design is that one specifies a potential 
(energy) function for every clique in the neighborhood graph such that the subset 
of random variables associated with that clique obtain their optimal values when 
that clique'S potential function obtains its minimal value (for reviews see [1]-[2]) . 
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Markov random field models provide a convenient mechanism for probabilistically 
representing and optimally combining combinations of local constraints. 

1.2 Analog circuit design using SPICE 

In some mixed signal ASIC (Application Specific Integrated Circuit) design prob­
lems, most of the circuit design specifications are well known but the introduction 
of a single constraint (e.g., an increase in substrate noise) could result in a major 
redesign of an entire circuit. The industry standard tool for aiding engineers in 
solving analog circuit design problems is SPICE which is a software environment 
for simulation of large scale electronic circuits. SPICE does have special optimiza­
tion options for fitting circuit parameters to desired input-output characteristics 
but typically such constraints are too weak for SPICE to solve analog circuit de­
sign problems with large numbers of free parameters (see [3] for an introduction to 
SPICE). Another difficulty with using SPICE is that it does not provide a global 
confidence factor for indicating its confidence in a generated design or local confi­
dence factors for determining the locations of "weak points" in the automatically 
generated circuit design solution. 

1.3 Markov field approaches to analog circuit design 

In this paper, an approach for solving real-world analog circuit design problems us­
ing an appropriately constructed Markov random is proposed which will be referred 
to as MRFSPICE. Not only are desired input-output characteristics directly incor­
porated into the construction of the potential functions for the Markov field but 
additional constraints based upon Kirchoff's current law are directly incorporated 
into the field. This approach thus differs from the classic SPICE methodology be­
cause Kirchoff current law constraints are explicitly incorporated into an objective 
function which is minimized by the "optimal design". This approach also differs 
from previous Markov field approaches (Le., the "Harmony" neural network model 
[4] and the "Brain-State-in-a-Box" neural network model [5]) designed to qualita­
tively model human understanding of electronic circuit behavior since those ap­
proaches used pair-wise correlational (quadratic) potential functions as opposed to 
the highly nonlinear potential functions that will be used in the approach described 
in this paper. 

1.4 Key contributions 

This paper thus makes three important contributions to the application of Markov 
random fields to the analog circuit design problem. First, a method for represent­
ing highly nonlinear and non-continuous analog circuits using Kirchoff current law 
potential functions within the context of a Markov field is described. Second, a 
relatively efficient algorithm for optimizing the Markov field objective function is 
briefly described and the convergence proof is briefly sketched. And third, empirical 
results illustrating the strengths and limitations of the approach is provided within 
the context of a JFET transistor design problem. 

2 Modeling assumptions and algorithms 

2.1 Probabilistic modeling assumptions 

A given circuit circuit design problem consists of a number of design decision vari­
ables. Denote those design decision variables by the discrete random variables 
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Xl, ... ,Xd' Let the MRF be denoted by the set x = [Xl"'" Xd] so that a realiza­
tion of x is the d-dimensional real vector x. A realization of x is referred to as a 
circuit design solution. 

Let the joint (global) probability mass function for x be denoted by Po. It is 
assumed that po(x) > po(y) if and only if the circuit design solution x is preferred 
to the circuit design solution y. Thus, po(x) specifies a type of probabilistic fuzzy 
measure [1]. 

For example, the random variable Xi might refer to a design decision concerning 
the choice of a particular value for a capacitor C14 . From previous experience, 
it is expected that the value of CI4 may be usually constrained without serious 
difficulties to one of ten possible values: 

O.IJ.LF, 0.2J.LF, 0.3J.LF, O.4J.LF, 0.5J.LF, 0.6J.LF, 0.7J.LF, 0.8J.LF, 0.9J.LF, ar 1J.LF. 

Thus, ki = 10 in this example. By limiting the choice of CI4 to a small number of 
finite values, this permits the introduction of design expertise hints directly into the 
problem formulation without making strong committments to the ultimate choice of 
the value of capacitor C14 • Other examples of design decision variable values include: 
resistor values, inductor values, transistor types, diode types, or even fundamentally 
different circuit topologies. 

The problem that is now considered will be to assign design preference probabilities 
in a meaningful way to alternative design solutions. The strategy for doing this will 
be based upon constructing po with the property that if po(x) > po(y), then circuit 
design solution x exhibits the requisite operating characteristics with respect to a 
set of M "test circuits" more effectively than circuit design solution y. An optimal 
analog circuit design solution x* then may be defined as a global maximum of Po. 
The specific details of this strategy for constructing Po are now discussed by first 
carefully defining the concept of a "test circuit". 

Let V = {O, 1, 2, ... ,m} be a finite set of integers (i.e., the unique "terminals" in 
the test circuit) which index a set of m complex numbers, Vo, VI, V2, .•. ,Vm which 
will be referred to as voltages. The magnitude of Vk indicates the voltage magnitude 
while the angle of Vk indicates the voltage phase shift. By convention the ground 
voltage, Vo , is always assigned the value of O. Let d E V x V (i.e., an ordered pair 
of elements in V). A circuit component current source is defined with respect to V 
by a complex-valued function ia,b whose value is typically functionally dependent 
upon Va and Vb but may also be functionally dependent upon other voltages and 
circuit component current sources associated with V. 

For example, a "resistor" circuit component current source would be modeled by 
choosing ia ,b = (Vb - Va) / R where R is the resistance in ohms of some resistor, Vb is 
the voltage observed on one terminal of the resistor, and Va is the voltage observed 
on the other terminal of the resistor. The quantity ia ,b is the current flowing through 
the resistor from terminal a to terminal b. Similarly, a "capacitor" circuit component 
current source would be modeled by choosing ia,b = (Vb - Va) /[27rj f] where j = A 
and f is the frequency in Hz of the test circuit. A "frequency specific voltage 
controlled current source" circuit component current source may be modeled by 
making ia ,b functionally dependent upon some subset of voltages in the test circuit. 
See [6] for additional details regarding the use of complex arithmetic for analog 
circuit analysis and design. 

An important design constraint is that Kirchoff's current law should be satisfied 
at every voltage node. Kirchoff's current law states that the sum of the currents 
entering a voltage node must be equal to zero [6]. We will now show how this 
physical law can be directly embodied as a system of nonlinear constraints on the 
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behavior of the MRF. 

We say that the kth voltage node in test circuit q is clamped if the voltage Vk is 
known. For example, node k in circuit q might be directly grounded, node k might 
be directly connected to a grounded voltage source, or the voltage at node k, Vk, 

might be a desired known target voltage. 

If voltage node k in test circuit q is damped, then Kirchoff's current law at voltage 
node k in circuit q is simply assumed to be satisfied which, in turn, implies that the 
voltage potential function «lq,k = O. 

Now suppose that voltage node k in test circuit q is not clamped. This means 
that the voltage at node k must be estimated. If there are no controlled current 
sources in the test circuit (Le., only passive devices), then the values of the voltages 
at the undamped nodes in the circuit can be calculated by solving a system of 
linear equations where the current choice of circuit component values are treated 
as constants. In the more general case where controlled current sources exist in the 
test circuit, then an approximate iterative gradient descent algorithm (such as the 
algorithm used by SPICE) is used to obtain improved estimates of the voltages of 
the undamped nodes. The iterative algorithm is always run for a fixed number of 
iterations. 

Now the value of «lq,k must be computed. The current entering node k via arc 
j in test circuit q is denoted by the two-dimensional real vector Ik,i whose first 
component is the real part of the complex current and whose second component is 
the imaginary part. 

The average current entering node k in test circuit q is given by the formula: 

nit 
-q ~ q 
Ik = (link) L- Ik,i' 

j=l 

pesign circuit components (e.g., resistors, capacitors, diodes, etc.) which minimize 
It will satisfy Kirchoff's current law at node k in test circuit q. However, the 
measure It is an not entirely adequate indicator of the degree to which Kirchoff's 
current law is satisfied since 1% may be small in magnitude not necessarily because 
Kirchoff's current law is satisfied but simply because all currents entering node k are 
small in magnitude. To compensate for this problem, a normalized current signal 
magnitude to current signal variability ratio is minimized at node k in test circuit 
q. This ratio decreases in magnitude if 1% has a magnitude which is small relative 
to the magnitude of individual currents entering node k in test circuit q. 

The voltage potential function, «l q,k, for voltage node k in test circuit q is now 
formally defined as follows. Let 

Let AI, ... , Au be those eigenvalues of Qk,q whose values are strictly greater than 
some small positive number €. Let ei be the eigenvector associated with eigenvalue 
Ai. Define 

u 

Qk,~ = L(l/Aj)ejeJ. 
j=l 

Thus, if Qk,q has all positive eigenvalues, then Qk,q is simply the matrix inverse of 
Qk,~. Using this notation, the voltage potential function for the undamped voltage 
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node k in test circuit q may be expressed by the formula: 

;¥,. [-Iq]TQ-I-Iq 'i!q ,1e = Ie Ie' 

Now define the global probability or "global preference" of a particular design con­
figuration by the formula: 

PG(x) = (l/Z)exp( -U(x» (1) 

where U = (liN) Lq Lk <I>q,k and where N is the total number of voltage nodes 
across all test circuits. The most preferred (Le., "most probable") design are the 
design circuit components that maximize PG. Note that probabilities have been 
assigned such that circuit configurations which are less consistent with Kirchoff's 
current law are considered "less probable" (Le., "less preferred"). 

Because the normalization constant Z in (I) is computationally intractable to com­
pute, it is helpful to define the easily computable circuit confidence factor, CCF, 
given by the formula: CCF{x) = exp( -U{x» = ZPG{x) . Note that the global 
probability P is directly proportional to the CCF. Since U is always non-negative 
and complete satisfaction of Kirchoff's current laws corresponds to the case where 
U = 0, it follows that CCF(x) has a lower bound of 0 (indicating "no subjective 
confidence" in the design solution x) and an upper bound of 1 (indicating" absolute 
subjective confidence" in the design solution x). 

In addition, local conditional probabilities of the form 

can be computed using the formula: 

Such local conditional probabilities are helpful for explicitly computing the proba­
bility or "preference" for selecting one design circuit component value given a subset 
of other design component values have been accepted. Remember that probability 
(Le., "preference") is essentially a measure of the degree to which the chosen de­
sign components and pre-specified operating characteristic voltage versus frequency 
curves of the circuit satisfy Kirchoff's current laws. 

2.2 MRFSPICE algorithm 

The MRFSPICE algorithm is a combination of the Metropolis and Besag's ICM 
(Iterated Conditional Modes) algorithms [1]-[2]. The stochastic Metropolis algo­
rithm (with temperature parameter set equal to one) is used to sample from p(x). 
As each design solution is generated, the CCF for that design solution is computed 
and the design solution with the best CCF is kept as an initial design solution guess 
Xo. Next, the deterministic ICM algorithm is then initialized with Xo and the ICM 
algorithm is applied until an equilibrium point is reached. 

A simulated annealing method involving decreasing the temperature parameter ac­
cording to a logarithmic cooling schedule in Step 1 through Step 5 could easily be 
used to guarantee convergence in distribution to a uniform distribution over the 
global maxima of PG (Le., convergence to an optimal solution) [1]-[2]. However, for 
the test problems considered thus far, equally effective results have been obtained by 
using the above fast heuristic algorithm which is guaranteed to converge to a local 
maximum as opposed to a global maximum. It is proposed that in situations where 
the convergence rate is slow or the local maximum generated by MRFSPICE is a 
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poor design solution with low CCF, that appropriate local conditional probabilites 
be computed and provided as feedback to a human design engineer. The human 
design engineer can then make direct alterations to the sample space of PG (Le., the 
domain of CC F) in order to appropriately simply the search space. Finally, the 
ICM algorithm can be easily viewed as an artificial neural network algorithm and 
in fact is a generalization of the classic Hopfield (1982) model as noted in [1]. 

!!.TEST 

+ "'"""----~ 

~OQ1 

!GTEST 

.sQ1 

Figure 1: As external input voltage generator EGTEST and external supply voltage 
EDT EST are varied, current ffiTEST flowing through external resistor RTEST is 
measured. 

3 JFET design problem 

In this design problem, specific combinations of free parameters for a macroequiva­
lent JFET transistor model were selected on the basis of a given set of characteristic 
curves specifying how the drain to source current of the JFET varied as a function of 
the gate voltage and drain voltage at OH z and 1M H z. Specifically, a .JFET transis~ 
tor model ~;as simulated using the classic Shichman and Hodges (1968) large-signal 
n-channel .JFET model as described by Vladimirescu [3] (pp. 96-100). The circuit 
diagram of this transistor model is shown in Figure 1. The only components in 
the circuit diagram which are not part of the JFET transistor model are the exter­
nal voltage generators EDTEST and EGTEST, and external resistor RTEST. The 
specific functions which describe how IDIQGDl, CDIQGD1, RDIQGD1, IDIQGSl, 
CDIQGS1, RDIQGSl, CGDQ1, and CGSQ1 change as a function of EGTEST and 
the current IRTEST (which Hows through RTEST) are too long and complex to be 
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presented here (for more details see [3] pp. 96-100). 

Five design decision variables were defined. The first design decision variable, 
XDIQGS1, specified a set of parameter values for the large signal gate to source 
diode model portion of the JFET model. There were 20 possible choices for the 
value of XDIQGS1. Similarly, the second design decision variable, XDIQGDl, had 
20 possible values and specified a set of parameter values for the large signal gate to 
drain diode model portion of the JFET model. The third design decision variable 
was XQl which also had 20 possible values were each value specified a set of choices 
for JFET -type specific parameters. The fourth and fifth design decision variables 
were the resistors RSQl and RSDI each of which could take on one of 15 possible 
values. 

The results of the JFET design problem are shown in Table 1. The phase angle 
for IRTEST at 1M H z was specified to be approximately 10 degrees, while the 
observed phase angle for IRTEST ranged from 7 to 9 degrees. The computing time 
was approximately 2 - 4 hours using unoptimized prototype MATLAB code on a 
200 MHZ Pentium Processor. The close agreement between the desired and actual 
results suggests further research in this area would be highly rewarding. 

Table 1: Evaluation of MRFSPICE-generated JFET design 

EGTEST EDTEST IRTEST @ DC (rna) IRTEST @ IMHZ _~ma) 
(desired/ actual) (desired/ actual) 

0 1.5 1.47/1.50 1.19 1.21 
0 2.0 1.96/1.99 1.60 1.62 
0 3.0 2.94/2.99 2.43 2.43 

-0.5 1.5 1.47/1.50 1.07/1.11 
-0.5 2.0 1.96/2.00 1.49/1.52 
-0.5 3.0 2.95/2.99 2.34/2.35 
-1.0 1.5 1.48/1.50 0.96/1.02 
-1.0 2.0 1.97/2.00 1.39/1.44 
-1.0 3.0 2.9613.00 2.27/2.29 
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