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In 1986, Tanner and Mead [1] implemented an interesting constraint sat
isfaction circuit for global motion sensing in a VLSI. We report here a 
new and improved a VLSI implementation that provides smooth optical 
flow as well as global motion in a two dimensional visual field. The com
putation of optical flow is an ill-posed problem, which expresses itself as 
the aperture problem. However, the optical flow can be estimated by the 
use of regularization methods, in which additional constraints are intro
duced in terms of a global energy functional that must be minimized . We 
show how the algorithmic constraints of Hom and Schunck [2] on com
puting smooth optical flow can be mapped onto the physical constraints 
of an equivalent electronic network. 

1 Motivation 

The perception of apparent motion is crucial for navigation. Knowledge of local motion of 
the environment relative to the observer simplifies the calculation of important tasks such as 
time-to-contact or focus-of-expansion. There are several methods to compute optical flow. 
They have the common problem that their computational load is large. This is a severe 
disadvantage for autonomous agents, whose computational power is restricted by energy, 
size and weight. Here we show how the global regularization approach which is necessary 
to solve for the ill-posed nature of computing optical flow, can be formulated as a local 
feedback constraint, and implemented as a physical analog device that is computationally 
efficient. 

* correspondence to: alan@ini .phys.ethz.ch 
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2 Smooth Optical Flow 

Horn and Schunck [2] defined optical flow in relation to the spatial and temporal changes 
in image brightness. Their model assumes that the total image brightness E(x, y, t) does 
not change over time; 

d 
dt E(x, y, t) = O. (I) 

Expanding equation (1) according to the chain rule of differentiation leads to 

o 0 0 
F == ox E(x, y, t)u + oy E(x, y, t)v + 8t E(x, y, t) = 0, (2) 

where u = dx / dt and v = dy / dt represent the two components of the local optical flow 
vector. 
Since there is one equation for two unknowns at each spatial location, the problem is 
ill-posed, and there are an infinite number of possible solutions lying on the constraint 
line for every location (x, y). However, by introducing an additional constraint the prob
lem can be regularized and a unique solution can be found. 
For example, Horn and Schunck require the optical flow field to be smooth. As a measure 
of smoothness they choose the squares of of the spatial derivatives of the flow vectors, 

(3) 

One can also view this constraint as introducing a priori knowledge: the closer two points 
are in the image space the more likely they belong to the projection of the same object. Un
der the assumption of rigid objects undergoing translational motion, this constraint implies 
that the points have the same, or at least very similar motion vectors. This assumption is 
obviously not valid at boundaries of moving objects, and so this algorithm fails to detect 
motion discontinuities [3]. 
The computation of smooth optical flow can now be formulated as the minimization prob
lem of a global energy functional, 

J J ~ dx dy ---7 min (4) 

L 

with F and 8 2 as in equation (2) and (3) respectively. Thus, we exactly apply the approach 
of standard regularization theory [4]: 

Ax=y 
x = A -Iy 

II Ax - y II +.x II P 11= min 

y: data 
inverse problem, ill-posed 

regularization 

The regularization parameter, .x, controls the degree of smoothing of the solution and its 
closeness to the data. The norm, II . II, is quadratic. A difference in our case is that A 
is not constant but depends on the data. However, if we consider motion on a discrete 
time-axis and look at snapshots rather than continuously changing images, A is quasi
stationary.1 The energy functional (4) is convex and so, a simple numerical technique 
like gradient descent would be able to find the global minimum. To compute optical flow 
while preserving motion discontinuities one can modify the energy functional to include 
a binary line process that prevents smoothing over discontinuities [4]. However, such an 
functional will not be convex. Gradient descent methods would probably fail to find the 
global amongst all local minima and other methods have to be applied. 

1 In the a VLSI implementation this requires a much shorter settling time constant for the network 
than the brightness changes in the image. 
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3 A Physical Analog Model 

3.1 Continuous space 

Standard regularization problems can be mapped onto electronic networks consisting of 
conductances and capacitors [5]. Hutchinson et al. [6] showed how resistive networks can 
be used to compute optical flow and Poggio et al. [7] introduced electronic network so
lutions for second-order-derivative optic flow computation. However, these proposed net
work architectures all require complicated and sometimes negative conductances although 
Harris et al. [8] outlined a similar approach as proposed in this paper independently. Fur
thennore, such networks were not implemented practically, whereas our implementation 
with constant nearest neighbor conductances is intuitive and straightforward. 
Consider equation (4): 

L = L(u, v, '\lu, '\lv, x, y). 
The Lagrange function L is sufficiently regular (L E C 2 ), and thus it follows from cal
culus of variation that the solution of equation (4) also suffices the linear Euler-Lagrange 
equations 

A '\l2u - Ex (Exu + Eyv + E t ) 

A'\l2v - Ey(Exu + Eyv + E t ) 

o 
O. 

(5) 

The Euler-Lagrange equations are only necessary conditions for equation (4). The suffi
cient condition for solutions of equations (5) to be a weak minimum is the strong Legendre
condition, that is 

L'ilu'ilu > 0 
which is easily shown to be true. 

and L'ilv'ilv > 0, 

3.2 Discrete Space - Mapping to Resistive Network 

By using a discrete five-point approximation of the Laplacian \7 2 on a regular grid, equa
tions (5) can be rewritten as 

A(Ui+1 )' + Ui-1 )' + Ui )'+1 + Ui )-1 - 4Ui )') - Ex, ,(Ex ,Ui)' + E y' Vi)' + E t , ) =0 (6) 
, , , , , t,] l,J' ' . ] ' 1 , J 

A(Vi+1)' +Vi- 1)' +Vi)'+1 +Vi)'-1 - 4Vi)' ) -Ey' (Ex, ,Ui)' +Ey' ,Vi)' +Et, ,)=0 , , , , , 1 , )'.J ' 1 ,1' 1,] 

where i and j are the indices for the sampling nodes. Consider a single node of the resistive 
network shown in Figure 1: 

Figure 1: Single node of a resistive network. 

From Kirchhoff's law it follows that 
dV,· , 

C d~') = G(Vi+1 ,j + Vi-I ,j + Vi,HI + Vi,j-1 - 4Vi,j) + lini.j (7) 
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where Vi ,j represents the voltage and l in', i the input current. G is the conductance between 
two neighboring nodes and C the node capacitance. 
In steady state, equation (7) becomes 

G(Vi+I ,j + Vi - I ,j + Vi, j+! + Vi ,j- I - 4Vi ,j) + lini" = O. (8) 

The analogy with equations (6) is obvious: 

G ~ .A 

lUin ·· ~ -Ex· . (Ex · UiJ' +Ey , ViJ' +Et · ) 
t t ] t. ) t t ) ' t ,]' 1 , ) 

lVin " ~ -Ey. , (Ex " UiJ, +Ey" Vi),+Et , ) (9) 
t , } t , } 1 , ) ' 1 , ) ' I , J 

To create the full system we use two parallel resistive networks in which the node voltages 
Ui, j and Vi,j represent the two components of the optical flow vector U and v . The input 
currents lUini,i and lVini" are computed by a negative recurrentfeedback loop modulated 
by the input data, which are the spatial and temporal intensity gradients. 
Notice that the input currents are proportional to the deviation of the local brightness con
straint: the less the local optical flow solution fits the data the higher the current lini.j will 
be to correct the solution and vice versa. 
Stability and convergence of the network are guaranteed by Maxwell 's minimum power 
principle [4, 9]. 

4 The Smooth Optical Flow Chip 

4.1 Implementation 

-CP\~}1J
~tf)~ 
! I ~ 

Figure 2: A single motion cell within the three layer network. For simplicity only one 
resistive network is shown. 

The circuitry consists of three functional layers (Figure 2). The input layer includes an 
array of adaptive photoreceptors [10] and provides the derivatives of the image brightness 
to the second layer, The spatial gradients are the first-order linear approximation obtained 
by subtracting the two neighboring photoreceptor outputs. The second layer computes the 
input current to the third layer according to equations (9). Finally these currents are fed 
into the two resistive networks that report the optical flow components. 
The schematics of the core of a single motion cell are drawn in Figure 3. The photoreceptor 
and the temporal differentiator are not shown as well as the other half of the circuitry that 
computes the y-component of the flow vector. 



710 A. Stocker and R. Doug/as 

A few remarks are appropriate here: First, the two components of the optical flow vector 
have to be able to take on positive and negative values with respect to some reference po
tential. Therefore, a symmetrical circuit scheme is applied where the positive and negative 
(reference voltage) values are carried on separate signal lines. Thus, the actual value is 
encoded as the difference of the two potentials. 

temporal 
differentiator 

E (E V + E) 
x x x t 

~." .... " ....... " ....... " ......... : 

Exl 
l _ f-VViBias ! 

I:········ .. ·· .. · .. ····· .. ··· .. ·: 

OpBias 

v+ 
X DiffBias 

1 

Figure 3: Cell core schematics; only the circuitry related to the computation of the 
x-component of the flow vector is shown. 

Second, the limited linear range of the Gilbert multipliers leads to a narrow span of flow ve
locities that can be computed reliably. However, the tuning can be such that the operational 
range is either at high or very low velocities. Newer implementations are using modified 
multipliers with a larger linear range. 
Third, consider a single motion cell (Figure 2). In principle, this cell would be able to sat
isfy the local constraint perfectly. In practice (see Figure 3), the finite output impedance of 
the p-type Gilbert multiplier slightly degrades this ideal solution by imposing an effective 
conductance G load . Thus, a constant voltage on the capacitor representing a non-zero mo
tion signal requires a net output current of the mUltiplier to maintain it. This requirement 
has two interesting consequences: 
i) The reported optical flow is dependent on the spatial gradients (contrast). A single un
coupled cell according to Figure 2 has a steady state solution with 

-Et .Ex . U I , ] ' .J 
i ,j '" (Gload + E;i .j + E~iJ and 

-EtEy .. 'Y: 1,) 1 , J 

i,j '" (Gload + E; . + Ey2) 
1,) 1,) 

respectively. For the same object speed, the chip reports higher velocity signals for higher 
spatial gradients. Preferably, Gload should be as low as possible to minimize its influence 
on the solution. 
ii) On the other hand, the locally ill-posed problem is now well-posed because G load im
poses a second constraint. Thus, the chip behaves sensibly in the case of low contrast 
input (small gradients), reporting zero motion where otherwise, unreliable high values 
would occur. This is convenient because the signal-to-noise ratio at low contrast is very 
poor. Furthermore, a single cell is forced to report the velocity on the constraint line with 
smallest absolute value, which is normal to the spatial gradient. That means that the chip 
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reports normal flow when there is no neighbor connection. Since there is an trade-off be
tween the robustness of the optical flow computation and a low conductance Glaad, the 
follower-connected transconductance amplifier in our implementation allows us to control 
G laad above its small intrinsic value. 

4.2 Results 

The results reported below were obtained from a MOSIS tinychip containing a 7x7 array 
of motion cells each 325x325 A 2 in size. The chip was fabricated in 1.2 J.,tm technology at 
AMI. 
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Figure 4: Smooth optical flow response of the chip to an left-upwards moving edge. 
a: photoreceptor output, the arrow indicates the actual motion direction. b: weak coupling 
(small conductance G). c: strong coupling. 
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Figure 5: Response of the optical flow chip to a plaid stimulus moving towards the left: 
a: photoreceptor output; b shows the normal flow computation with disabled coupling 
between the motion cells in the network while in c the coupling strength is at maximum. 

The chip is able to compute smooth optical flow in a qualitative manner. The smoothness 
can be set by adjusting the coupling conductances (Figure 4). Figure 5b presents the nor
mal flow computation that occurs when the coupling between the motion cells is disabled. 
The limited resolution of this prototype chip together with the small size of the stimulus 
leads to a noisy response. However it is clear that the chip perceives the two gratings as 
separate moving objects with motion normal to their edge orientation. When the network 




