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Abstract 

I consider the problem of calculating learning curves (i.e., average 
generalization performance) of Gaussian processes used for regres­
sion. A simple expression for the generalization error in terms of 
the eigenvalue decomposition of the covariance function is derived, 
and used as the starting point for several approximation schemes. 
I identify where these become exact, and compare with existing 
bounds on learning curves; the new approximations, which can 
be used for any input space dimension, generally get substantially 
closer to the truth. 

1 INTRODUCTION: GAUSSIAN PROCESSES 

Within the neural networks community, there has in the last few years been a 
good deal of excitement about the use of Gaussian processes as an alternative to 
feedforward networks [lJ. The advantages of Gaussian processes are that prior 
assumptions about the problem to be learned are encoded in a very transparent 
way, and that inference-at least in the case of regression that I will consider-is 
relatively straightforward. One crucial question for applications is then how 'fast' 
Gaussian processes learn, i.e., how many training examples are needed to achieve a 
certain level of generalization performance. The typical (as opposed to worst case) 
behaviour is captured in the learning curve, which gives the average generalization 
error € as a function of the number of training examples n. Several workers have 
derived bounds on €(n) [2,3, 4J or studied its large n asymptotics. As I will illustrate 
below, however, the existing bounds are often far from tight; and asymptotic results 
will not necessarily apply for realistic sample sizes n. My main aim in this paper 
is therefore to derive approximations to €( n) which get closer to the true learning 
curves than existing bounds, and apply both for small and large n. 

In its simplest form, the regression problem that I am considering is this: We are 
trying to learn a function 0* which maps inputs x (real-valued vectors) to (real­
valued scalar) outputs O*(x) . We are given a set of training data D, consisting of n 
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input-output pairs (Xl, yt); the training outputs Yl may differ from the 'clean' target 
outputs 9* (xL) due to corruption by noise. Given a test input x, we are then asked 
to come up with a prediction 9(x) for the corresponding output, expressed either in 
the simple form of a mean prediction 9(x) plus error bars, or more comprehensively 
in terms of a 'predictive distribution' P(9(x)lx, D). In a Bayesian setting, we do this 
by specifying a prior P(9) over our hypothesis functions, and a likelihood P(DI9) 
with which each 9 could have generated the training data; from this we deduce the 
posterior distribution P(9ID) ex P(DI9)P(9). In the case of feedforward networks, 
where the hypothesis functions 9 are parameterized by a set of network weights, the 
predictive distribution then needs to be extracted by integration over this posterior, 
either by computationally intensive Monte Carlo techniques or by approximations 
which lead to analytically tractable integrals. For a Gaussian process, on the other 
hand, obtaining the predictive distribution is trivial (see below); one reason for 
this is that the prior P(9) is defined directly over input-output functions 9. How 
is this done? Any 9 is uniquely determined by its output values 9(x) for all x 
from the input domain, and for a Gaussian process, these are simply assumed to 
have a joint Gaussian distribution (hence the name). This distribution can be 
specified by the mean values (9(x))o (which I assume to be zero in the following, 
as is commonly done), and the covariances (9(x)9(x' ))o = C(x, x'); C(x, x') is 
called the covariance function of the Gaussian process. It encodes in an easily 
interpretable way prior assumptions about the function to be learned. Smoothness, 
for example, is controlled by the behaviour of C(x, x') for x' -+ x: The Ornstein­
Uhlenbeck (OU) covariance function C(x, x') ex exp( -IX-X'l/l) produces very rough 
(non-differentiable) functions, while functions sampled from the squared exponential 
(SE) prior with C(X,X') ex exp(-Ix - x' 12/(2l2)) are infinitely differentiable. The 
'length scale' parameter l, on the other hand, corresponds directly to the distance in 
input space over which we expect our function to vary significantly. More complex 
properties can also be encoded; by replacing l with different length scales for each 
input component, for example, relevant (smalll) and irrelevant (large l) inputs can 
be distinguished. 

How does inference with Gaussian processes work? I only give a brief summary here 
and refer to existing reviews on the subject (see e.g. [5, 1]) for details. It is simplest 
to assume that outputs yare generated from the 'clean' values of a hypothesis 
function 9(x) by adding Gaussian noise of x-independent variance 0'2. The joint 
distribution of a set of training outputs {yd and the function values 9(x) is then 
also Gaussian, with covariances given by 

here I have defined an n x n matrix K and x-dependent n-component vectors k(x). 
The posterior distribution P(9ID) is then obtained by simply conditioning on the 
{Yl}. It is again Gaussian and has mean and variance 

(B(x))OID 

( (9(x) - 9(X))2) 
OlD 

9(x) = k(X)TK-1y 

C(x, x) - k(X)TK-lk(x) 

(1) 

(2) 

Eqs. (1,2) solve the inference problem for Gaussian process: They provide us directly 
with the predictive distribution P(9(x)lx, D). The posterior variance, eq. (2), in 
fact also gives us the expected generalization error at x. Why? If the teacher 
is 9*, the squared deviation between our mean prediction and the teacher output 
is1 (9(x) - 9* (X))2; averaging this over the posterior distribution of teachers P(9* ID) 
just gives (2). The underlying assumption is that our assumed Gaussian process 

lOne can also one measure the generalization by the squared deviation between the 
prediction O(x) and the noisy teacher output; this simply adds a term 0'2 to eq. (3). 
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prior is the true one from which teachers are actually generated (and that we are 
using the correct noise model). Otherwise, a more complicated expression for the 
expected generalization error results; in line with most other work on the subject, I 
only consider the 'correct prior' case in the following. Averaging the generalization 
error at x over the distribution of inputs gives then 

(3) 

This form of the generalization error (which is well known [2, 3, 4, 5]) still depends 
on the training inputs (the fact that the training outputs have dropped out already 
is a signature of the fact that Gaussian processes are linear predictors, compare (1)). 
Averaging over data sets yields the quantity we are after, 

€ = (t(D)}D· (4) 

This average expected generalization error (I will drop the 'average expected' in the 
following) only depends on the number of training examples n; the function €(n) 
is called the learning curve. Its exact calculation is difficult because of the joint 
average in eqs. (3,4) over the training inputs Xl and the test input x. 

2 LEARNING CURVES 

As a starting point for an approximate calculation of €(n), I first derive a repre­
sentation of the generalization error in terms of the eigenvalue decomposition of 
the covariance function. Mercer's theorem (see e.g. [6]) tells us that the covariance 
function can be decomposed into its eigenvalues Ai and eigenfunctions (/Ji(x): 

00 

C(x, x') = L Ai<Pi(X)qJi(x') (5) 
i=1 

This is simply the analogue of the eigenvalue decomposition of a finite symmetric 
matrix; the eigenfunctions can be taken to be normalized such that (<Pi (x) <Pj (x)} x = 
Oij . Now write the data-dependent generalization error (3) as €(D) = (C(x,x)}x­
tr (k(x)k(x)T)x K- 1 and perform the x-average in the second term: 

«(k(x)k(x)T)lm)x = L AiAj<Pi(XI) (<Pi (x)<pj (x)} <pj(xm) = L A;<Pi (Xt}<Pi (xm ) 

ij i 

This suggests introducing the diagonal matrix (A)ij = AiOij and the 'design matrix' 
(<J»li = <Pi (xt), so that (k(x)k(x)T)x = <J>A2<J>T. One then also has (C(x,x)}x = 
tr A, and the matrix K is expressed as K = a 21 + <J>A<J>T, 1 being the identity 
matrix. Collecting these results, we have 

€(D) = tr A - tr (a21 + <J>A<J>T)-I<J>A2<J>T 

This can be simplified using the Woodbury formula for matrix inverses (see e.g. [7]), 
which applied to our case gives (a2I+<J>A<J>T)-1 = a-2[I-<J>(a21+A<J>T<J»-1 A<J>TJ; 
after a few lines of algebra, one then obtains the final result 

t= (t(D))D' €(D) =tra2A(a21+A<J>T<J»-1 =tr(A-1 +a-2 <J>T<J»-1 (6) 

This exact representation of the generalization error is one of the main results of this 
paper. Its advantages are that the average over the test input X has already been 
carried out, and that the remainingf dependence on the training data is contained 
entirely in the matrix <J> T <J>. It also includes as a special case the well-known result 
for linear regression (see e.g. [8]); A-I and <J> T <J> can be interpreted as suitably 
generalized versions of the weight decay (matrix) and input correlation matrix. 
Starting from (6), one can now derive approximate expressions for the learning 
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curve I:(n). The most naive approach is to entirely neglect the fluctuations in cJ>TcJ> 
over different data sets and replace it by its average, which is simply (( cJ> T cJ> )ij ) D = 
I:l (¢i(Xt)¢j(XI)) D = n8ij . This leads to the Naive approximation 

I:N(n) = tr (A -1 + O'- 2nI)-1 (7) 

which is not, in general, very good. It does however become exact in the large noise 
limit 0'2 -t 00 at constant nlO'2 : The fluctuations of the elements of the matrix 
O'-2cJ>TcJ> then become vanishingly small (of order foO'- 2 = (nlO' 2 )/fo -t 0) and 
so replacing cJ> T cJ> by its average is justified. 

To derive better approximations, it is useful to see how the matrix 9 = (A -1 + 
O'-2cJ>TcJ»-1 changes when a new example is added to the training set. One has 

9(n + 1) - 9(n) = [9- 1 (n) + O'-21j11j1T r l - 9(n) = _ 9(n)1jI1jIT9(n) (8) 
0'2 + 1jIT 9(n)1jI 

in terms of the vector 1jI with elements (1jI)i = ¢i(Xn+I); the second identity uses 
again the Woodbury formula. To get exact learning curves, one would have to av­
erage this update formula over both the new training input Xn+1 and all previous 
ones. This is difficult, but progress can be made by again neglecting some fluctu­
ations: The average over Xn +1 is approximated by replacing 1jI1jIT by its average, 
which is simply the identity matrix; the average over the previous training inputs 
by replacing 9(n) by its average G(n) = (9(n)) D' This yields the approximation 

G 2 (n) 
G(n + 1) - G(n) = - 2 G() (9) a +tr n 

Iterating from G(n = 0) = A, one sees that G(n) remains diagonal for all n, and 
so (9) is trivial to implement numerically. I call the resulting I:D(n) = tr G(n) the 
Discrete approximation to the learning curve, because it still correctly treats n as 
a variable with discrete, integer values. One can further approximate (9) by taking 
n as continuously varying, replacing the difference on the left-hand side by the 
derivative dG( n) 1 dn. The resulting differential equation for G( n) is readily solved; 
taking the trace, one obtains the generalization error 

I:uc(n) = tr (A -1 + O'-2n'I)-1 (10) 

with n' determined by the self-consistency equation n' + tr In(I + O'- 2 n' A) = n. 
By comparison with (7), n' can be thought of as an 'effective number of training 
examples'. The subscript DC in (10) stands for Upper Continuous approximation. 
As the name suggests, there is another, lower approximation also derived by treating 
n as continuous. It has the same form as (10), but a different self-consistent equation 
for n', and is derived as follows. Introduce an auxiliary offset parameter v (whose 
usefulness will become clear shortly) by 9-1 = vI+A -1 +O'-2cJ>TcJ>; at the end ofthe 
calculation, v will be set to zero again. As before, start from (8)-which also holds 
for nonzero v-and approximate 1jI1jIT and tr 9 by their averages, but retain possible 
fluctuations of 9 in the numerator. This gives G(n+ 1) - G(n) = - (92 (n)) 1[0'2 + 
tr G(n)]. Taking the trace yields an update formula for the generalization error 1:, 
where the extra parameter v lets us rewrite the average on the right-hand side as 
-tr (92 ) = (olov)tr (9) = ol:lov. Treating n again as continuous, we thus arrive 
at the partial differential equation Eh{on = (oI:l ov) 1 (0'2 + 1:). This can be solved 
using the method of characteristics [8 and (for v = 0) gives the Lower Continuous 
approximation to the learning curve, 

nO'2 
I:Lc(n) = tr (A -1 + O'- 2n'I)-1 , n' = (11) 

0'2 + I:LC 
By comparing derivatives w.r.t. n, it is easy to show that this is always lower than 
the DC approximation (10). One can also check that all three approximations that 
I have derived (D, LC and DC) converge to the exact result (7) in the large noise 
limit as defined above. 
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3 COMPARISON WITH BOUNDS AND SIMULATIONS 

I now compare the D, LC and UC approximations with existing bounds, and with 
the 'true' learning curves as obtained by simulations. A lower bound on the gener­
alization error was given by Michelli and Wahba [2J as 

€(n) �~� €Mw(n) = 2::n+l Ai (12) 

This is derived for the noiseless case by allowing 'generalized observations' (pro­
jections of 0* (x) along the first n eigenfunctions of C (x, x') ), and so is unlikely 
to be tight for the case of 'real' observations at discrete input points. Based on 
information theoretic methods, a different Lower bound was obtained by Opper [3J: 

1 
€(n) �~� €Lo(n) = 4"tr (A -1 + 2a-2nl)-1 x [I + (I + 2a-2nA)-lJ 

This is always lower than the naive approximation (7); both incorrectly suggest that 
€ decreases to zero for a2 -+ 0 at fixed n, which is clearly not the case (compare (12)). 
There is also an Upper bound due to Opper [3J, 

i(n) �~� €uo(n) = (a- 2n)-1 tr In(1 + a-2nA) + tr (A -1 + a-2nl)-1 (13) 

Here i is a modified version of € which (in the rescaled version that I am using) 
becomes identical to € in the limit of small generalization errors (€ « a2 ), but never 
gets larger that 2a2 ; for small n in particular, €(n) can therefore actually be much 
larger than i(n) and its bound (13). An upper bound on €(n) itself was derived 
by Williams and Vivarelli [4J for one-dimensional inputs and stationary covariance 
functions (for which C(x, x') is a function of x - x' alone). They considered the 
generalization error at x that would be obtained from each individual training ex­
ample, and then took the minimum over all n examples; the training set average 
of this 'lower envelope' can be evaluated explicitly in terms of integrals over the 
covariance function [4J. The resulting upper bound, €wv(n), never decays below a2 

and therefore complements the range of applicability of the UO bound (13). 

In the examples in Fig. 1, I consider a very simple input domain, x E [0, 1 Jd, 
with a uniform input distribution. I also restrict myself to stationary covariance 
functions, and in fact I use what physicists call periodic boundary conditions. This 
is simply a trick that makes it easy to calculate the required eigenvalue spectra of 
the covariance function, but otherwise has little effect on the results as long as the 
length scale of the covariance function is smaller than the size of the input domain2 , 

l « 1. To cover the two extremes of 'rough' and 'smooth' Gaussian priors, I 
consider the OU [C(x, x') = exp( -lx-xll/l)J and SE [C(x, x') = exp( -lx-x' 12 /2l 2)J 
covariance functions. The prior variance of the values of the function to be learned is 
simply C (x, x) = 1; one generically expects this 'prior ignorance' to be significantly 
larger than the noise on the training data, so I only consider values of a2 < 1. 
I also fix the covariance function length scale to l = 0.1; results for l = 0.01 
are qualitatively similar. Several observations can be made from Figure 1. (1) 
The MW lower bound is not tight, as expected. (2) The bracket between Opper's 
lower and upper bounds (LO /UO) is rather wide (1-2 orders of magnitude); both 
give good representations of the overall shape of the learning curve only in the 
asymptotic regime (most clearly visible for the SE covariance function), i. e., once 
€ has dropped below a2 . (3) The WV upper bound (available only in d = 1) works 

21n d = 1 dimension, for example, a 'periodically continued' stationary covariance 
function on [0,1] can be written as C(X,X') = 2:::_ooc(x - x' + r). For I « 1, only 
the r = 0 term makes a significant contribution, except when x and x' are within �~� I of 
opposite ends of the input space. With this definition, the eigenvalues of C(x, x') are given 
by the Fourier transform 1:"00 dx c(x) exp( -2rriqx), for integer q. 






