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Abstract 

Lazy learning is a memory-based technique that, once a query is re
ceived, extracts a prediction interpolating locally the neighboring exam
ples of the query which are considered relevant according to a distance 
measure. In this paper we propose a data-driven method to select on a 
query-by-query basis the optimal number of neighbors to be considered 
for each prediction. As an efficient way to identify and validate local 
models, the recursive least squares algorithm is introduced in the con
text of local approximation and lazy learning. Furthermore, beside the 
winner-takes-all strategy for model selection, a local combination of the 
most promising models is explored. The method proposed is tested on 
six different datasets and compared with a state-of-the-art approach. 

1 Introduction 

Lazy learning (Aha, 1997) postpones all the computation until an explicit request for a 
prediction is received. The request is fulfilled interpolating locally the examples consid
ered relevant according to a distance measure. Each prediction requires therefore a local 
modeling procedure that can be seen as composed of a structural and of a parametric iden
tification . The parametric identification consists in the optimization of the parameters of 
the local approximator. On the other hand, structural identification involves, among other 
things, the selection of a family of local approximators, the selection of a metric to evaluate 
which examples are more relevant, and the selection of the bandwidth which indicates the 
size of the region in which the data are correctly modeled by members of the chosen family 
of approximators. For a comprehensive tutorial on local learning and for further references 
see Atkeson et al. (1997). 

As far as the problem of bandwidth selection is concerned, different approaches exist. The 
choice of the bandwidth may be performed either based on some a priori assumption or 
on the data themselves. A further sub-classification of data-driven approaches is of interest 
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here. On the one hand, a constant bandwidth may be used; in this case it is set by a global 
optimization that minimizes an error criterion over the available dataset. On the other hand, 
the bandwidth may be selected locally and tailored for each query point. 

In the present work, we propose a method that belongs to the latter class of local data-driven 
approaches. Assuming a given fixed metric and local linear approximators, the method we 
introduce selects the bandwidth on a query-by-query basis by means of a localleave-one
out cross-validation. The problem of bandwidth selection is reduced to the selection of the 
number k of neighboring examples which are given a non-zero weight in the local modeling 
procedure. Each time a prediction is required for a specific query point, a set of local 
models is identified, each including a different number of neighbors. The generalization 
ability of each model is then assessed through a local cross-validation procedure. Finally, 
a prediction is obtained either combining or selecting the different models on the basis of 
some statistic of their cross-validation errors. 

The main reason to favor a query-by-query bandwidth selection is that it allows better 
adaptation to the local characteristics of the problem at hand. Moreover, this approach is 
able to handle directly the case in which the database is updated on-line (Bontempi et at., 
1997). On the other hand, a globally optimized bandwidth approach would, in principle, 
require the global optimization to be repeated each time the distribution of the examples 
changes. 

The major contribution of the paper consists in the adoption of the recursive least squares 
algorithm in the context of lazy learning. This is an appealing and efficient solution to the 
intrinsically incremental problem of identifying and validating a sequence of local linear 
models centered in the query point, each including a growing number of neighbors. It is 
worth noticing here that a leave-one-out cross-validation of each model considered does 
not involve any significant computational overload, since it is obtained though the PRESS 
statistic (Myers, 1990) which simply uses partial results returned by the recursive least 
squares algorithm. Schaal and Atkeson (1998) used already the recursive least squares 
algorithm for the incremental update of a set of local models. In the present paper, we 
use for the first time this algorithm in a query-by-query perspective as an effective way to 
explore the neighborhood of each query point. 

As a second contribution, we propose a comparison, on a local scale, between a competitive 
and a cooperative approach to model selection. On the problem of extracting a final pre
diction from a set of alternatives, we compared a winner-takes-all strategy with a strategy 
based on the combination of estimators (Wolpert, 1992). 

In Section 5 an experimental analysis of the recursive algorithm for local identification 
and validation is presented. The algorithm proposed, used in conjunction with different 
strategies for model selection or combination, is compared experimentally with Cubist, the 
rule-based tool developed by Ross Quinlan for generating piecewise-linear models. 

2 Local Weighted Regression 

Given two variables x E lRm and y E lR, let us consider the mapping f: lRm --t lR, known 
only through a set of n examples {(Xi, yd} ~=l obtained as follows: 

(1) 

where Vi, Ci is a random variable such that E[ciJ = 0 and E[ciCjJ = 0, Vj =1= i, and 
such that E[ciJ = I-lm(Xi), Vm ~ 2, where I-lmO is the unknown mth moment of the 
distribution of Ci and is defined as a function of Xi. In particular for m = 2, the last of 
the above mentioned properties implies that no assumption of global homoscedasticity is 
made. 
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The problem of local regression can be stated as the problem of estimating the value that the 
regression function f(x) = E[Ylx] assumes for a specific query point x, using information 
pertaining only to a neighborhood of x. 

Given a query point x q , and under the hypothesis of a local homoscedasticity of Ci, the 
parameter (3 of a local linear approximation of f (.) in a neighborhood of Xq can be obtained 
solving the local polynomial regression: 

(2) 

where, given a metric on the space Rm, d( Xi, Xq) is the distance from the query point to the 
ith example, K (.) is a weight function, h is the bandwidth, and where a constant value 1 
has been appended to each vector Xi in order to consider a constant term in the regression. 

In matrix notation, the solution of the above stated weighted least squares problem is given 
by: 

/3 = (X'W'WX)-lX'W'Wy = (Z'Z)-lZ'V = PZ'v, (3) 

where X is a matrix whose ith row is x~, y is a vector whose ith element is Yi, W is 
a diagonal matrix whose ith diagonal element is Wii = JK (d(Xi,Xq)jh), Z = WX, 
v = Wy, and the matrix X'W'WX = Z'Z is assumed to be non-singular so that its 
inverse P = (Z'Z)-l is defined. 

Once obtained the local linear polynomial approximation, a prediction of Yq = f(xq), is 
finally given by: 

Yq=X~/3 . (4) 

Moreover, exploiting the linearity of the local approximator, a leave-one-out cross
validation estimation of the error variance E[ (Yq - Yq)2] can be obtained without any 
significant overload. In fact, using the PRESS statistic (Myers, 1990), it is possible to 
calculate the error er = Yj - xj /3 _ j' without explicitly identifying the parameters /3- j 

from the examples available with the ph removed. The formulation of the PRESS statistic 
for the case at hand is the following: 

cv _ ,A _ Yj - xjPZ'v _ Yj - xj/3 
ej - Yj - x j {3 _ j - 1 'P - 1 h ' 

- Zj Zj - jj 
(5) 

where zj is the ph row of Z and therefore Zj = WjjXj, and where hjj is the ph diagonal 
e1ementoftheHatmatrixH = ZPZ' = Z(Z'Z) - lZ' . 

3 Recursive Local Regression 

In what follows, for the sake of simplicity, we will focus on linear approximator. An 
extension to generic polynomial approximators of any degree is straightforward. We will 
assume also that a metric on the space Rm is given. All the attention will be thus centered 
on the problem of bandwidth selection. 

If as a weight function K(-) the indicator function 

K (d(Xi'Xq)) = {I ifd(xi,xq)::; h, 
h 0 otherwise; 

(6) 

is adopted, the optimization of the parameter h can be conveniently reduced to the opti
mization of the number k of neighbors to which a unitary weight is assigned in the local 
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regression evaluation. In other words, we reduce the problem of bandwidth selection to a 
search in the space of h( k) = d( x( k), Xq), where x( k) is the kth nearest neighbor of the 
query point. 

The main advantage deriving from the adoption of the weight function defined in Eq. 6, 
is that, simply by updating the parameter /3(k) of the model identified using the k nearest 
neighbors, it is straightforward and inexpensive to obtain /3 (k + 1). In fact, performing a 
step of the standard recursive least squares algorithm (Bierman, 1977), we have: 

P(k + 1) = P(k) _ P(k)x(k + l)x'(k + l)P(k) 
1 + x'(k + l)P(k)x(k + 1) 

,(k + 1) = P(k + l)x(k + 1) 

e(k + 1) = y(k + 1) - x' (k + l)/3(k) 

/3(k + 1) = /3(k) + ,(k + l)e(k + 1) 

(7) 

where P(k) = (Z'Z)-l when h = h(k), and where x(k + 1) is the (k + l)th nearest 
neighbor of the query point. 

Moreover, once the matrix P(k + 1) is available, the leave-one-out cross-validation errors 
can be directly calculated without the need of any further model identification: 

cv _ Yj - xj/3(k + 1) 
ej (k + 1) - 1 _ xjP(k + l)x/ (8) 

It will be useful in the following to define for each value of k the [k x 1] vector e CV (k) that 
contains all the leave-one-out errors associated to the model {3(k). 

Once an initialization /3(0) = jj and P(O) = P is given, Eq. 7 and Eq. 8 recursively 
evaluate for different values of k a local approximation of the regression function f(·), 
a prediction of the value of the regression function in the query point, and the vector of 
leave-one-out errors from which it is possible to extract an estimate of the variance of the 
prediction error. Notice that jj is an a priqri estimate of the parameter and P is the covari
ance matrix that reflects the reliabi!ity of f3 (Bierman, 1977). For non-reliable initialization, 
the following is usually adopted: P = >'1, with>. large and where I is the identity matrix. 

4 Local Model Selection and Combination 

The recursive algorithm described by Eq. 7 and Eq. 8 returns for a given query point x q , 

a set of predictions Yq (k) = x~/3(k), together with a set of associated leave-one-out error 
vectors e Cv (k) . 

From the information available, a final prediction f)q of the value of the regression function 
can be obtained in different ways. Two main paradigms deserve to be considered: the first 
is based on the selection of the best approximator according to a given criterion, while the 
second returns a prediction as a combination of more local models. 

If the selection paradigm, frequently called winner-takes-all, is adopted, the most natural 
way to extract a final prediction Yq, consists in comparing the prediction obtained for each 
value of k on the basis of the classical mean square error criterion: 

"k ( CV(k))2 
A L.J' Wi e· 

with k = argmin MSE(k) = argmin t=l t . 
k k "k . ' 

L.Ji=l W t 

(9) 
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Table 1: A summary of the characteristics of the data sets considered. 

Dataset I Housing I Cpu I Prices I Mpg I Servo I Ozone I 
Number of 506 209 159 392 167 330 examples 
Number of l3 6 
regressors 16 7 8 8 

where Wi are weights than can be conveniently used to discount each error according to the 
distance from the query point to the point to which the error corresponds (Atkeson et at., 
1997). 

As an alternative to the winner-takes-all paradigm, we explored also the effectiveness of 
local combinations of estimates (Wolpert, 1992). Adopting also in this case the mean 
square error criterion, the final prediction of the value Yq is obtained as a weighted average 
of the best b models, where b is a parameter of the algorithm. Suppose the predictions ilq (k) 
and the error vectors e Cv (k) have been ordered creating a sequence of integers {ki } so that 
MSE( ki ) ::; MSE( kj ), Vi < j. The prediction of Yq is given by 

~ L~-l (iYq(kd 
Yq = ",b r. ' 

L..-i=l ,>z 

(10) 

where the weights are the inverse of the mean square errors: (i = l/MSE(ki ). This is an 
example of the generalized ensemble method (Perrone & Cooper, 1993). 

5 Experiments and Results 

The experimental evaluation ofthe incremental local identification and validation algorithm 
was performed on six datasets. The first five, described by Quinlan (1993), were obtained 
from the VCI Repository of machine learning databases (Merz & Murphy, 1998), while the 
last one was provided by Leo Breiman. A summary ofthe characteristics of each dataset is 
presented in Table 1. 

The methods compared adopt the recursive identification and validation algorithm, com
bined with different strategies for model selection or combination. We considered also two 
approaches in which k is selected globally: 

Ibl: Local bandwidth selection for linear local models. The number of neighbors is se
lected on a query-by-query basis and the prediction returned is the one of the best 
model according to the mean square error criterion. 

IbO: Local bandwidth selection for constant local models. The algorithm for constant 
models is derived directly from the recursive method described in Eq. 7 and Eq. 8. 
The best model is selected according to the mean square error criterion. 

IbC: Local combination of estimators. This is an example, of the method described in 
Eq. 10. On the datasets proposed, for each query the best 2 linear local models 
and the best 2 constant models are combined. 

gbl: Global bandwidth selection for linear local models. The value of k is obtained min
imizing the prediction error in 20-fold cross-validation on the dataset available. 
This value is then used for all the query points. 

gbO: Global bandwidth selection for constant local models. As in gbl, the value of k is 
optimized globally and kept constant for all the queries. 
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Table 2: Mean absolute error on unseen cases. 

Method I Housing I Cpu I Prices I Mpg I Servo I Ozone 
Ibl 2.21 28.38 1509 1.94 0.48 3.52 
IbO 2.60 31.54 1627 1.97 0.32 3.33 
IbC 2.12 26.79 1488 1.83 0.29 3.31 

gbl 2.30 28.69 1492 1.92 0.52 3.46 
gbO 2.59 32.19 1639 1.99 0.34 3.19 

Cubist 2.17 28.37 1331 1.90 0.36 3.15 

Table 3: Relative error (%) on unseen cases. 

I Method I Housing I Cpu I Prices I Mpg I Servo I Ozone 
Ibl 12.63 9.20 15.87 12.65 28.66 35.25 
IbO 18.06 20.37 22.19 12.64 22.04 31.11 
IbC 12.35 9.29 17.62 11.82 19.72 30.28 
gb1 13.47 9.93 15.95 12.83 30.46 32.58 
gbO 17.99 21.43 22.29 13.48 24.30 28.21 

Cubist 16.02 12.71 11.67 12.57 18.53 26.59 

As far as the metric is concerned, we adopted a global Euclidean metric based on the 
relative influence (relevance) ofthe regressors (Friedman, 1994). We are confident that the 
adoption of a local metric could improve the performance of our lazy learning method. 

The results of the methods introduced are compared with those we obtained, in the same 
experimental settings, with Cubist, the rule-based tool developed by Quinlan for generating 
piecewise-linear models. Each approach was tested on each dataset using the same 10-fold 
cross-validation strategy. Each dataset was divided randomly into 10 groups of nearly 
equal size. In turn, each of these groups was used as a testing set while the remaining 
ones together were providing the examples. Thus all the methods performed a prediction 
on the same unseen cases, using for each of them the same set of examples. In Table 2 
we present the results obtained by all the methods, and averaged on the 10 cross-validation 
groups. Since the methods were compared on the same examples in exactly the same 
conditions, the sensitive one-tailed paired test of significance can be used. In what follows, 
by "significantly better" we mean better at least at a 5% significance level. 

The first consideration about the results concerns the local combination of estimators. Ac
cording to Table 2, the method IbC performs in average always better than the winner
takes-all linear and constant. On two dataset IbC is significantly better than both Ibl and 
IbO; and on three dataset it is significantly better than one of the two, and better in average 
than the other. 

The second consideration is about the comparison between our query-by-query bandwidth 
selection and a global optimization of the number of neighbors: in average Ibl and IbO 
performs better than their counterparts gbl and gbO. On two datasets Ibl is significantly 
better than gbl, while is about the same on the other four. On one dataset IbO is significantly 
better than gbO. 

As far as the comparison with Cubist is concerned, the recursive lazy identification and 
validation proposed obtains results comparable with those obtained by the state-of-the-art 
method implemented in Cubist. On the six datasets, IbC performs one time significantly 
better than Cubist, and one time significantly worse. 
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The second index of performance we investigated is the relative error, defined as the mean 
square error on unseen cases, normalized by the variance of the test set. The relative errors 
are presented in Table 3 and show a similar picture to Table 2, although the mean square 
errors considered here penalize larger absolute errors. 

6 Conclusion and Future Work 

The experimental results confirm that the recursive least squares algorithm can be effec
tively used in a local context. Despite the trivial metric adopted, the local combination 
of estimators, identified and validated recursively, showed to be able to compete with a 
state-of-the-art approach. 

Future work will focus on the problem of local metric selection. Moreover, we will ex
plore more sophisticated ways to combine local estimators and we will extend this work to 
polynomial approximators of higher degree. 
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