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Abstract 

Finding articulated objects, like people, in pictures present.s a par
ticularly difficult object. recognition problem. We show how t.o 
find people by finding putative body segments, and then construct.
ing assemblies of those segments that are consist.ent with the con
straints on the appearance of a person that result from kinematic 
properties. Since a reasonable model of a person requires at. least 
nine segments, it is not possible to present every group to a classi
fier. Instead, the search can be pruned by using projected versions 
of a classifier that accepts groups corresponding to people. We 
describe an efficient projection algorithm for one popular classi
fier , and demonstrate that our approach can be used to determine 
whether images of real scenes contain people. 

1 Introduction 

Several t.ypical collpctions containing over ten million images are listed in [2]. There 
is an extensiw literature on obtaining images from large collections using features 
computed from t.he whole image , including colour histograms, texture measures and 
shape measures ; a partial review appears in [5]. 

However, in the most comprehensive field study of usage pract.ices (a paper by 
Enser [2] surveying the use of the Hulton Deutsch collection), t.here is a clear user 
preference for searching these collections on image semantics. An ideal search tool 
,,,ould be a quite general object recognition system that could be adapted quickly 
and easily to the types of objects sought by a user. An important special case 
is finding people and determining what they are doing . This is hard , because 
people have many internal degrees of freedom. We follow the approach of [3], 
and represent people as collections of cylinders, each representing a body segment. 
Regions that could be the projections of cylinders are easily found using techniques 
similar to those of [1]. Once these regions ate found , they must be assembled 



Learning to Find Pictures of People 783 

int.o collect.ions t.hat. are consistent with the appearance of images of real people, 
which are constrained by the kinematics of human joints; consistency is tested 
wit.h a classifier. Since t.here are many candidate segment.s, a brute force search 
is impossible. \Ve show how this search can be pruned using projections of the 
classifier . 

2 Learning to Build Seglnent Configurations 

Suppose that. ;V segments have been found in an image , and there are m body parts. 
We will defin e a labeling as a set L = {(Ll , sd , (l2, S2), .. . , (h·, sd} of pairs where 
each segment. Si E {1 .. . N} is labeled with the labelli E {1 . .. m}. A labeling is 
complete if it represents a full m-segment configuration (Fig. 2( a,b)). 

Assume we have a classifier C that for any complete labeling L output.s C( L) > 0 
if L corresponds to a person-like configuration, and C (L) < 0 otherwise. Finding 
all the possible body configurations in an image is equivalent. t.o finding all the 
complete labelings L for which C(L) > O. This cannot be done with brute-force 
search t.hrough the entire set.. The search can be pruned if, for an (incomplete) 
labeling L' there is no complete L ;2 L' such that G(L) > O. For inst.ance, if two 
segments cannot represent the upper and lower left. arm, as in Figure la, then we 
do not consider any complete labelings where they are labeled as such. 

Projected classifiers make the search for body configura tions efficient. by pruning 
la belings using the properties of smaller sub-Iabelings (as in [7], who use manually 
determined bounds and do not learn the tests). Given a classifier G which is a 
function of a set of features whose values depend on segments with labels l1 . . . Im , 
t.he projected classifier Cil (k is a function of of all those features that depend 
only on the segments with labels 11 ... lh ' In particular, GIllk(1') > 0 if there is 
some ext.ension L of l' such that C(L) > 0 (see figure l).The converse need not 
be true: t.he fea ture values required to bring a projected point inside the positive 

. volUl11f' of C' may not be realized with any labeling of t.he current Sf't. of segments 
1, . .. , N. For a projected classifier to be usefuL it must be easy to compute the 
projection , and it must be effective in rejecting labelings at. an early stage. These 
are strong rf'quirements which are not satisfied by most good classifiers; for example, 
in our f'xperience a support vector machine with a posit.ive definit.e quadratic kernel 
projects easily but typically yields unrestrictive projected classifiers. 

2.1 Building Labelings Increm entally 

Assume we have a classifier C that accepts assemblies corresponding to people and 
that we can construct. projected classifiers as we need them. We will now show how 
t.o use them to ronst.ruct labelings, using a pyramid of classifiers. 

A pyramid of classifiers (Fig. 1 (c)) , determined by the classifier C and a permutation 
of labels (11 .. . ld consists of nodes NI, ... IJ corresponding to each of the projected 
classifiers CI , .I J • i ~ j. Each of the bottom-level nodes NI , receives the set of all 
segments ill the image as the input . The top node Nil 1m OUt.pUt.S t.he set of all 
complete labelings L = {(/ 1 , sIl . . . (lm,sm)) such that G(L) > 0, i.e. the set of all 
assemblies in t.he image classified as people. Further, each node NI , . I, outputs the 
set of all sub-labelings L = {(li,sil . . . (lj,Sj)) such that GI, I)(L) > O. 

ThE' node:,> Nt , at t.he bottom level work by selecting all segments Si in the image for 
which n, {(I,.:>i)} > O. Each of the remaining nodes has t.wo part.s: merging and 
filt.ering. The merying stage of node NI, .. I J merges the outputs of its children by 
computing t.he set of all la belings {(li, s;) . .. (lj, Sj)} where {(Ii , sd ... (lj -1, S j - tl} 
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Figure 1: (a) Two segments that cannot correspond to the left upper and lower 
arm. Any configuration where they do can be rejected using a projected classifier 
regardless of the other segments that might appear in the configuration. (b) Pro
Jecting a classifier G {( [1, SI), ([2, S2)}' The shaded area is the volume classified as 
positive, for the feature set {x (SI), y( SI , S2)} . Finding the projection Gil amounts 
to projecting off the features that cannot be computed from SI only, i. e., Y(SI' S2}. 
(c) A pyramid of classifiers. Each node outputs sub-assemblies accepted by the cor
responding projected classifier. Each node except those in the bottom row works by 
forming labelings from the outputs of its two children, and filtering the result using 
the corresponding projected classifier. The top node outputs the set of all complete 
labelings that correspond to body configurations. 

and {(li+l, si+d . .. (Ij, Sj)} are in the outputs of N I,lj_1 and NI,+l .. lj' respectively. 
The filtering stage then selects, from the resulting set of labelings, those for which 
G1, ... lj(·) > 0, and the resulting set is the output of Nl, . lj' It is clear, from the 
definition of projected classifiers, that the output of the pyramid is, in fact, the set 
of all complete L for which G(L) > 0 (note that GIl 1m = G) . 

The only constraint on the order in which the outputs of nodes are computed is that 
children nodes have to be applied before parents. In our implementation, we use 
nodes Nl, . l j where j changes from 1 to m, and, for each j, i changes from j down to 
1. This is equivalent to computing sets of labelings of the form {(II , stl . . . (lj, Sj)} 
in order, where getting (j + I)-segment labelings from j-segment ones is itself an 
incremental process, whereby we check labels againstlj +l in the order [j, lj-I, . . . , [1. 

In practice , we choose the latter order on the fly for each increment step using a 
greedy algorithm, to minimize the size of labeling sets that are constructed (note 
that in this case the classifiers no longer form a pyramid) . The order (11 .. . lm) in 
which labels are added to an assembly needs to be fixed. We determine this order 
with a greedy algorithm by running a large segment set through the labeling builder 
and choosing the next label to add so as to minimize the number of labelings that 
result. 

2.2 Classifiers that Project 

In our problem, each segment from the set {I .. . N} is a rectangle in some position 
and orientation. Given a complete labeling L = {(I, SI), ... , (m, sm)} , we want to 
have G(L) > 0 iff the segment arrangement produced by L looks like a person . 
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Figure 2: (a) All segments extracted for an image. (b) A labeled segment con
figuration corresponding to a person, where T=torso, LUA=left upper arm, etc. 
The head is not marked because we are not looking for it with our method. The 
single left leg segment in (a) has been broken in (b) to generate the upper and 
lower leg segments. (c) (top) A combination of a bounding box (the dashed line) 
and a boosted classifier, for two features x and y. Each plane in the boosted 
classifier is a thick line with the positive half-space indicated by an arrow; the 
associated weight {3 is shown next to the arrow. The shaded area is the posi
tive volume of the classifier, which are the points P where LJ wJ{P(f)) > 1/2. 
The weights wx (-) and wy{') are shown along the x- and y-axes, respectively, and 
the total weight wx{P{x)) + Wy{P{y)) is shown for each region of the bounding 
box. (bottom) The projected classifier, given by wx{P{x)) > 1/2 - 8 = 0.1 whel'P 
8 = maxp(y) wy{P{y)) = max{0.25, 0.4, 0.15} = 0.4. 

Each feature will depend on a few segments (1 to 3 in our experiments). Our 
kinematic features are invariant to translation, uniform scaling or rotation of the 
segment set, and include angles between segments and ratios of lengths, widths and 
distances. We expect the features that correspond to human configurations to lie 
within small fractions of their possible value ranges. This suggests using an axis
aligned bounding box, with bounds learned from a collection of positive labelings, 
for a good first separation, and then using a boosted version of a weak classifier that 
splits the feature space on a single feature value (as in [6]). This classifier projects 
particularly well, using a simple algorithm described in section 2.3. 

Each weak classifier (Fig. 2(c)) is defined by the feature Ij on which the split is 
made, the position Pj of the splitting hyperplane, and the direct.ion dj E {I, -I} 
that determines which half-space is positive. A point P is classified as positive iff 
dj{P{fj) - Pj) > 0, where P{fj) is the value of feature /j. The boosting algorithm 
will associate a weight {3j with each plane {so that Lj {3j = 1), and the resulting 

classifier will classify a point as positive iffLd,(p(f,)-Pi»o{3j > 1/2, that is, iff the 
total weight of the weak classifiers that classify the point as positive is at least a 
half of the total weight of the classifiers. The set {/j} may have repeating features 
(which may have different Pj, dj and Wj values), and does not need to span the 
entire feature set. 

By grouping together the weights corresponding to planes splitting on the same 
feature, we finally rewrite the classifier as LJ wJ(P(f)) > 1/2, where 'U'J(P(f)) = 
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LfJ=j, dJ (P(f)-Pl »0 j3j is the weight associated with the particular value of feature 
f, is a piece-wise constant function and depends on in which of the intervals given 
by {pj I fj = f} this value falls . 

2.3 Projecting a Boosted Classifier 

Given a classifier constructed as above, we need to construct classifiers that depend 
on on some identified subset of the features . The geometry of our classifiers -
whose positive regions consist of unions of axis-aligned bounding boxes - makes 
this easy to do. 

Let 9 be the feature to be projected away - perhaps because the value depends on 
a label that is not available. The projection of the classifier should classify a point 
pi in the (lower-dimensional) feature space as positive iffmaxp Lj Wj (P(f)) > 1/2 
where P is a point which projects into pi but can have any value for P(g). We can 
rewrite this expression as LNg Wj(PI(f)) + maXp(g) wg(P(g)) > 1/2. The value 
of J = maxwg(P(g)) is readily available and independent of P'. We can see that, 
with the feature projected away, we obtain Lj Wj (Pi (f)) > 1/2 - J. Any number 
of features can be project.ed away in a sequence in this fashion . An example of the 
projected classifier is shown in Figure 2( c). 

The classifier C we are using allows for an efficient building of labelings, in that 
the features do not need to be recomputed when we move from G/t.l k to Gil .lk+l. 

We achieve this efficiency by carrying along with a labeling L = {(it , SI) ... (lk' Sk)} 
the sum <T(L) = L.jEF(II.lk) Wj(P(f)) where F(ll ... Ik ) is the set of all features 
computable from the segments labeled as 11, ... , lk' and {P(f)} - the values of 
these features . When we add another segment. to get L' = {(II , sd .. . (lk+l, Sk+d}, 
we can compute <T(L') = <T(L) + LjEF(II .lk+d\F(lllk) 11'j(PI(f)). In other words , 
when we add a labellk+l, we need to compute only those features that require Sk+l 
for their computation. 

3 Experimental Results 

We report results for a system that automatically identifies potential body segments 
(using the techniques described in [4]), and then applies the assembly process de
scribed above. Images for which assemblies that are kinematically consistent with a 
person are reported as having people in them. The segment finder may find either 
1 or 2 segments for each limb, depending on whether it is bent or straight; because 
the pruning is so effective, we can allow segments to be broken into two equal halves 
lengt.hwise (like the left leg in Fig. 2(b)), both of which are tested. 

3.1 Training 

The training set included 79 images without people , selected randomly from t.he 
COREL dat.abase, and 274 images each with a single person on uniform background. 
The images wit.h people have been scanned from books of human models [10]. All 
segments in the test images were reported; in the control images, only segments 
whose int.erior corresponded to human skin in colour and texture were reported. 
Control images, both for the training and for the test set, were chosen so that all 
had at least 30% of their pixels similar to human skin in colour and texture . This 
gives a more realistic test of the system performance by excluding regions that are 
obviously not human, and reduces the number of segments in the control images to 
the same order of magnitude as those in the test images . 
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Features II Test Control I Features II False Neg. False Pos. 

367 
II 

120 28 

I I 
367 

II 
37 ~ 1~~ 567 120 86 567 49 0 

a b 

Table 1: (a) Number of images of people (test) and without people (control) processed 
by the classifiers with 367 and 567 features. (b) False negative rim ages with a person 
where no body configuration was found) and false positive (images with no people 
where a person was detected) rates. 

The models are all wearing either swim suits or no clothes, otherwise segment finding 
fails; it is an open problem to segment people wearing loose clothing. There is a 
wide variation in the poses of the training examples, although all body segments 
are visible. The sets of segments corresponding to people were then hand-labeled. 
Of the 274 images with people, segments for each body part were found in 193 
images. The remaining 81 resulted in incomplete configurations, which could still 
be used for computing the bounding box used to obtain a first separation. Since 
we assume that if a configuration looks like a person then its mirror image would 
too, we double the number of body configurations by flipping each one about a 
vertical axis. The bounding box is then computed from the resulting .548 points in 
the feature space , without looking at the images without people . 

The boosted classifier was trained to separate two classes: the 193 x 2 = 386 points 
corresponding to body configurations, and 60727 points that did not correspond to 
people but lay in the bounding box, obtained by using the bounding box classifier 
to incrementally build labelings for the images with no people. We added 1178 
synthetic positive configurations obtained by randomly selecting each limb and the 
torso from one of the 386 real images of body configurations (which were rotated 
and scaled so the torso positions were the same in all of them) to give an effect 
of joining limbs and torsos from different images rather like children's flip-books . 
Remarkably, tlw boosted classifier classified each of the real data points correctly but 
misclassified 976 out of the 1178 synthetic configurations as negative; the synthetic 
examples were unexpectedly more similar to the negative examples than the real 
positive examples were. 

3.2 Results 

The test dataset was separate from the training set and included 120 images with a 
person on a uniform background, and varying numbers of control images , reported 
in Table 1. We report results for two classifiers, one using 567 features and the 
other using a subset of 367 of those features . Table 1 b shows the false positive 
and false negative rates achieved for each of the two classifiers. By marking 51 % 
of test images and only 10% of control images, the classifier using 567 features 
compares extremely favorably with that of [3], which marked 54% of test images 
and 38% of control images using hand-tuned tests to form groups of four segments. 
In 55 of the 59 images where there was a false negative, a segment corresponding 
to a body part was missed by the segment finder, meaning that t he overall system 
performance significantly understates the classifier performance. There are few 
signs of overfitting, probably because the features are highly redundant. Using the 
larger set of features makes labeling faster (by a factor of about five), because more 
configurations are rejected earlier. 
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4 Conclusions and Future Work 

Groups of segments that satisfy kinematic constraints, learned from images of real 
people, quite reliably correspond to people and can be used to identify them. Our 
trick of projecting classifiers is effective at pruning an otherwise completely unman
ageable correspondence search . Future issues include: fusing responses from face 
finders (such as those of [11, 9]; exploiting patterns of shading on human limbs to 
get better selectivity (as in [8]); determining the configuration of the person, which 
might tell what they are doing; and exploiting the kinematic similarities between 
humans and many animals to build systems that can find many different types of 
animal without searching the classes one by one. 
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