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We provide a model of the standard watermaze task, and of a more 
challenging task involving novel platform locations, in which rats 
exhibit one-trial learning after a few days of training. The model 
uses hippocampal place cells to support reinforcement learning, 
and also, in an integrated manner, to build and use allocentric 
coordinates. 

1 INTRODUCTION 

Whilst it has long been known both that the hippocampus of the rat is needed for 
normal performance on spatial tasksl3 , 11 and that certain cells in the hippocampus 
exhibit place-related firing,12 it has not been clear how place cells are actually used 
for navigation. One of the principal conceptual problems has been understanding 
how the hippocampus could specify or learn paths to goals when spatially tuned 
cells in the hippocampus respond only on the basis of the rat's current location. 
This work uses recent ideas from reinforcement learning to solve this problem in 
the context of two rodent spatial learning results. 

Reference memory in the watermazell (RMW) has been a key task demonstrating 
the importance of the hippocampus for spatial learning. On each trial, the rat is 
placed in a circular pool of cloudy water, the only escape from which is a platform 
which is hidden (below the water surface) but which remains in a constant position. 
A random choice of starting pOSition is used for each trial. Rats take asymptotically 
short paths after approximately 10 trials (see figure 1 a). Delayed match-to-place 
(DMP) learning is a refined version in which the platform'S location is changed on 
each day. Figure 1 b shows escape latencies for rats given four trials per day for nine 
days, with the platform in a novel position on each day. On early days, acquisition 
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Figure 1: a) Latencies for rats on the reference memory in the watermaze (RMW) 
task (N=8). b) Latencies for rats on the Delayed Match-to-Place (DMP) task (N=62). 

is gradual but on later days, rats show one-trial learning, that is, near asymptotic 
performance on the second trial to a novel platform position. 

The RMW task has been extensively modelled. 6,4,5,20 By contrast, the DMP task 
is new and computationally more challenging. It is solved here by integrating a 
standard actor-critic reinforcement learning system2,7 which guarantees that the 
rat will be competent to perform well in arbitrary mazes, with a system that learns 
spatial coordinates in the maze. Temporal difference learning 1 7 (TO) is used for actor, 
critic and coordinate learning. TO learning is attractive because of its generality for 
arbitrary Markov decision problems and the fact that reward systems in vertebrates 
appear to instantiate it. 14 

2 THEMODEL 

The model comprises two distinct networks (figure 2): the actor-critic network and 
a coordinate learning network. The contribution of the hippocampus, for both 
networks, is to provide a state-space representation in the form of place cell basis 
functions. Note that only the activities of place cells are required, by contrast with 
decoding schemes which require detailed information about each place cell.4 
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Figure 2: Model diagram showing the interaction between actor-critic and coordi
nate system components. 
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2.1 Actor-Critic Learning 

Place cells are modelled as being tuned to location. At position p, place cell 
i has an output given by h(p) = exp{ -lip - sdI2/2(12}, where Si is the place 
field centre, and (1 = 0.1 for all place fields. The critic learns a value function 
V(p) = L:i wih(p) which comes to represent the distance of p from the goal, using 
the TO rule 6.w~ ex: 8t h(pt), where 

(1) 

is the TD error, pt is position at time t, and the reward r(pt, pt+I) is 1 for any 
move onto the platform, and 0 otherwise. In a slight alteration of the original rule, 
the value V (p) is set to zero when p is at the goal, thus ensuring that the total 
future rewards for moving onto the goal will be exactly 1. Such a modification 
improves stability in the case of TD learning with overlapping basis functions. 
The discount factor, I' was set to 0.99. Simultaneously the rat refines a policy, 
which is represented by eight action cells. Each action cell (aj in figure 2) receives 
a parameterised input at any position p: aj (p) = L:i qjdi (p). An action is chosen 
stochastically with probabilities given by P(aj) = exp{2aj}/ L:k exp{2ak}. Action 
weights are reinforced according to:2 

(2) 

where 9j((Jt) is a gaussian function of the difference between the head direction 
(Jt at time t and the preferred direction of the jth action cell. Figure 3 shows the 
development of a policy over a few trials. 
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Figure 3: The RMW task: the value function gradually disseminates information 
about reward proximity to all regions of the environment. Policies and paths are 
also shown. 

There is no analytical guarantee for the convergence of TD learning with policy 
adaptation. However our simulations show that the algorithm always converges 
for the RMW task. In a simulated arena of diameter 1m and with swimming speeds 
of 20cm/s, the simulation matched the performance of the real rats very closely (see 
figure S). This demonstrates that TD-based reinforcement learning is adequately 
fast to account for the learning performance of real animals. 
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2.2 Coordinate Learning 

Although the learning of a value function and policy is appropriate for finding 
a fixed platform, the actor-critic model does not allow the transfer of knowledge 
from the task defined by one goal position to that defined by any other; thus it 
could not generate the sort of one-trial learning that is shown by rats on the DMP 
task (see figure 1 b). This requires acquisition of some goal-independent know ledge 
about s~ace. A natural mechanism for this is the path integration or self-motion 
system. 0,10 However, path integration presents two problems. First, since the rat 
is put into the maze in a different position for each trial, how can it learn consistent 
coordinates across the whole maze? Second, how can a general, powerful, but slow, 
behavioral learning mechanism such as TO be integrated with a specific, limited, 
but fast learning mechanism involving spatial coordinates? 

Since TO critic learning is based on enforcing consistency in estimates of future 
reward, we can also use it to learn spatially consistent coordinates on the basis 
of samples of self-motion. It is assumed that the rat has an allocentric frame of 
reference.1s The model learns parameterised estimates of the x and y coordinates 
of all positions p: x(p) = Li w[ fi(P) and y(p) = Li wY h(p), Importantly, while 
place cells were again critical in supporting spatial representation, they do not embody 
a map of space. The coordinate functions, like the value function previously, have to 
be learned. 

As the simulated rat moves around, the coordinate weights {w[} are adjusted 
according to: t 

Llwi ()( (Llxt + X (pt+l ) - X(pt)) L At - k h(pk) (3) 
k=1 

where Llxt is the self-motion estimate in the x direction. A similar update is applied 
to {wn. In this case, the full TO(A) algorithm was used (with A = 0.9); however 
TD(O) could also have been used, taking slightly longer. Figure 4a shows the x and 
y coordinates at early and late phases of learning. It is apparent that they rapidly 
become quite accurate - this is an extremely easy task in an open field maze. 

An important issue in the learning of coordinates is drift, since the coordinate 
system receives no direct information about the location of the origin. It turns out 
that the three controlling factors over the implicit origin are: the boundary of the 
arena, the prior setting of the coordinate weights (in this case all were zero) and 
the position and prior value of any absorbing area (in this case the platform). If the 
coordinate system as a whole were to drift once coordinates have been established, 
this would invalidate coordinates that have been remembered by the rat over long 
periods. However, since the expected value of the prediction error at time steps 
should be zero for any self-consistent coordinate mapping, such a mapping should 
remain stable. This is demonstrated for a single run: figure 4b shows the mean 
value of coordinates x evolving over trials, with little drift after the first few trials. 

We modeled the coordinate system as influencing the choice of swimming direction 
in the manner of an abstract action. I5 The (internally specified) coordinates of the 
most recent goal position are stored in short term memory and used, along with the 
current coordinates, to calculate a vector heading. This vector heading is thrown 
into the stochastic competition with the other possible actions, governed by a 
single weight which changes in a similar manner to the other action weights (as in 
equation 2, see also fig 4d), depending on the TO error, and on the angular proximity 
of the current head direction to the coordinate direction. Thus, whether the the 
coordinate-based direction is likely to be used depends upon its past performance. 

One simplification in the model is the treatment of extinction. In the DMP task, 



Hippocampal Model of Rat Spatial Abilities Using 1D Learning 

" TJUAL 

d i: 
~Ol 

~o 

!" 
~o 

,. 

149 

III .1 26 16 
TRIAL 

Figure 4: The evolution of the coordinate system for a typical simulation run: a.) 
coordinate outputs at early and late phases of learning, b.) the extent of drift in the 
coordinates, as shown by the mean coordinate value for a single run, c.) a measure 

f d· A2 ~ ~ {Xr (Pr.)-Xr -X(pr.)}2 
o coor mate error for the same run (7E = r r. (Np-l)Nr ' where k 
indexes measurement points (max Np ) and r indexes runs (max Nr), Xr(Pk) is the 
model estimate of X at position Pk, X(Pk) is the ideal estimate for a coordinate 
system centred on zero, and Xr is the mean value over all the model coordinates, 
d.) the increase during training of the probability of choosing the abstract action. 
This demonstrates the integration of the coordinates into the control system. 

real rats extinguish to a platform that has moved fairly quickly whereas the actor
critic model extinguishes far more slowly. To get around this, when a simulated 
rat reaches a goal that has just been moved, the value and action weights are 
reinitialised, but the coordinate weights wf and wf, and the weights for the abstract 
action, are not. 

3 RESULTS 

The main results of this paper are the replication by simulation of rat performance 
on the RMW and DMP tasks. Figures la and b show the course of learning for 
the rats; figures Sa and b for the model. For the DMP task, one-shot acquisition is 
apparent by the end of training. 

4 DISCUSSION 

We have built a model for one-trial spatial learning in the watermaze which uses 
a single TD learning algorithm in two separate systems. One system is based on a 
reinforcement learning that can solve general Markovian decision problems, and 
the other is based on coordinate learning and is specialised for an open-field water 
maze. Place cells in the hippocampus offer an excellent substrate for learning the 
actor, the critic and the coordinates. 

The model is explicit about the relationship between the general and specific learn
ing systems, and the learning behavior shows that they integrate seamlessly. As 
currently constituted, the coordinate system would fail if there were a barrier in 
the maze. We plan to extend the model to allow the coordinate system to specify 
abstract targets other than the most recent platform position - this could allow 
it fast navigation around a larger class of environments. It is also important to 
improve the model of learning 'set' behavior - the information about the nature of 
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Figure 5: a.) Performance of the actor-critic model on the RMW task, and b.) 
performance of the full model on the DMP task. The data for comparison is shown 
in figures la and b. 

the DMP task that the rats acquire over the course of the first few days of training. 
Interestingly, learning set is incomplete - on the first trial of each day, the rats 
still aim for the platform position on the previous day, even though this is never 
correct.16 The significant differences in the path lengths on the first trial of each 
day (evidence in figure Ib and figure 5b) come from the relative placements of the 
platforms. However, the model did not use the same positions as the empirical 
data, and, in any case, the model of exploration behavior is rather simplistic. 

The model demonstrates that reinforcement learning methods are perfectly fast 
enough to match empirical learning curves. This is fortunate, since, unlike most 
models specifically designed for open-field navigation,6,4,5,2o RL methods can 
provably cope with substantially more complicated tasks with arbitrary barriers, 
etc, since they solve the temporal credit assignment problem in its full generality. 
The model also addresses the problem that coordinates in different parts of the 
same environment need to be mutually consistent, even if the animal only expe
riences some parts on separate trials. An important property of the model is that 
there is no requirement for the animal to have any explicit knowledge of the rela
tionship between different place cells or place field position, size or shape. Such a 
requirement is imposed in various models.9,4,6,2o 

Experiments that are suggested by this model (as well as by certain others) con
cern the relationship between hippocampally dependent and independent spatial 
learning. First, once the coordinate system has been acquired, we predict that 
merely placing the rat at a new location would be enough to let it find the platform 
in one shot, though it might be necessary to reinforce the placement e.g. by first 
placing the rat in a bucket of cold water. Second, we know that the establishment 
of place fields in an environment happens substantiallr faster than establishment 
of one-shot or even ordinary learning to a platform.2 We predict that blocking 
plasticity in the hippocampus following the establishment of place cells (possibly 
achieved without a platform) would not block learning of a platform. In fact, new 
experiments show that after extensive pre-training, rats can perform one-trial learn
ing in the same environment to new platform positions on the DMP task without 
hippocampal synaptic plasticity. 16 This is in contrast to the effects of hippocampal 
lesion, which completely disrupts performance. According to the model, coor
dinates will have been learned during pre-training. The full prediction remains 
untested: that once place fields have been established, coordinates could be learned 
in the absence of hippocampal synaptic plasticity. A third prediction follows from 
evidence that rats with restricted hippocampal lesions can learn the fixed platform 
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task, but much more slowly, based on a gradual "shaping" procedure.22 In our 
model, they may also be able to learn coordinates. However, a lengthy training 
procedure could be required, and testing might be complicated if expressing the 
knowledge required the use of hippocampus dependent short-term memory for 
the last platform location. I6 

One way of expressing the contribution of the hippocampus in the model is to say 
that its function is to provide a behavioural state space for the solution of complex 
tasks. Hence the contribution of the hippocampus to navigation is to provide 
place cells whose firing properties remain consistent in a given environment. It 
follows that in different behavioural situations, hippocampal cells should provide 
a representation based on something other than locations - and, indeed, there 
is evidence for this.8 With regard to the role of the hippocampus in spatial tasks, 
the model demonstrates that the hippocampus may be fundamentally necessary 
without embodying a map. 
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