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Abstract 

In this paper, we discuss regularisation in online/sequential learn­
ing algorithms. In environments where data arrives sequentially, 
techniques such as cross-validation to achieve regularisation or 
model selection are not possible. Further, bootstrapping to de­
termine a confidence level is not practical. To surmount these 
problems, a minimum variance estimation approach that makes use 
of the extended Kalman algorithm for training multi-layer percep­
trons is employed. The novel contribution of this paper is to show 
the theoretical links between extended Kalman filtering, Sutton's 
variable learning rate algorithms and Mackay's Bayesian estima­
tion framework. In doing so, we propose algorithms to overcome 
the need for heuristic choices of the initial conditions and noise 
covariance matrices in the Kalman approach. 

1 INTRODUCTION 

Model estimation involves building mathematical representations of physical pro­
cesses using measured data. This problem is often referred to as system identifi­
cation, time-series modelling or machine learning. In many occasions, the system 
being modelled varies with time. Under this circumstance, the estimator needs to be 
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updated sequentially. Online or sequential learning has many applications in track­
ing and surveillance, control systems, fault detection, communications, econometric 
systems, operations research, navigation and other areas where data sequences are 
often non-stationary and difficult to obtain before the actual estimation process. 

To achieve acceptable generalisation, the complexity of the estimator needs to be 
judiciously controlled. Although there are various reliable schemes for controlling 
model complexity when training en bloc (batch processing), the same cannot be 
said about sequential learning. Conventional regularisation techniques cannot be 
applied simply because there is no data to cross-validate. Consequently, there is 
ample scope for the design of sequential methods of controlling model complexity. 

2 NONLINEAR ESTIMATION 

A dynamical system may be described by the following discrete, stochastic state 
space representation: 

Wk +dk 
g(Wk, tk) + Vk 

(1) 
(2) 

where it has been assumed that the model parameters (Wk E R<J) constitute the 
states of the system, which in our case represent the weights of a multi-layer percep­
tron (MLP). g is a nonlinear vector function that may change at each estimation 
step k, tk denotes the time at the k-th estimation step and dk and Vk represent 
zero mean white noise with covariances given by Qk and Rk respectively. The noise 
terms are often called the process noise (dk) and the measurement noise (Vk). The 
system measurements are encoded in the output vector Yk E Rm. 

The estimation problem may be reformulated as having to compute an estimate 
Wk of the states Wk using the set of measurements Yk = {Yl, Y2, "', Yk}. The 
estimate Wk can be used to predict future values of the output y. We want Wk to be 
an unbiased, minimum variance and consistent estimate (Gelb 1984). A minimum 
variance (unbiased) estimate is one that has its variance less than or equal to that of 
any other unbiased estimator. Since the variance of the output Y depends directly 
on the variance of the parameter estimates (Astrom 1970), the minimum variance 
framework constitutes a regularisation scheme for sequential learning. 

The conditional probability density function of Wk given Yk (p(wkIYk)) constitutes 
the complete solution of the estimation problem (Bar-Shalom and Li 1993, Ho and 
Lee 1964, Jazwinski 1970). This is simply because p(wkIYk) embodies all the statis­
tical information about Wk given the measurements Yk and the initial condition Woo 
This is essentially the Bayesian approach to estimation, where instead of describing 
a model by a single set of parameters, it is expressed in terms of the conditional 
probability p(wkIYk) (Jaynes 1986, Jazwinski 1970). The estimate Wk can be com­
puted from p(wklY k) according to several criteria, namely MAP estimation (peak 
of the posterior), minimum variance estimation (centroid of the posterior) and min­
imax estimation (median of the posterior). 

The Bayesian solution to the optimal estimation problem is (Ho and Lee 1964): 

P(Wk+1,Yk+I IYk) 
p(Yk+1IYk) 
J p(Yk+1IYk, Wk+l )p(wk+1lwk)P(Wk IY k)dwk 

J J p(Yk+lIYk, Wk+1 )p(Wk+llwk)p(Wk IY k)dwk+l dWk (3) 

where the integrals run over the parameter space. This functional integral difference 
equation governing the evolution of the posterior density function is not suitable 
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for practical implementation (Bar-Shalom and Li 1993, Jazwinski 1970). It involves 
propagating a quantity (the posterior density function) that cannot be described 
by a finite number of parameters. The situation in the linear case is vastly simpler. 
There the mean and covariance are sufficient statistics for describing the Gaussian 
posterior density function. 

In view of the above statements, it would be desirable to have a framework for non­
linear estimation similar to the one for linear-Gaussian estimation. The extended 
Kalman filter (EKF) constitutes an attempt in this direction (Bar-Shalom and Li 
1993, Gelb 1984). The EKF is a minimum variance estimator based on a Taylor 
series expansion of the nonlinear function g(w) around the previous estimate. The 
EKF equations for a linear expansion are given by: 

(Pk + Qk)Gk+l [Rk + Gk+1 (Pk + Qk)Gk+1]-1 

Wk + Kk+l(Yk+l - Gk+l Wk) 

Pk + Qk - Kk+lGk+l (Pk + Qk) 

(4) 

(5) 

(6) 

where Pk denotes the covariance of the weights. In the general multiple input, 
multiple output (MIMO) case, g E ~m is a vector function and G represents the 
Jacobian of the network outputs with respect to the weights. 

The EKF provides a minimum variance Gaussian approximation to the posterior 
probability density function. In many cases, p(wkIYk) is a multi-modal (several 
peaks) function. In this scenario, it is possible to use a committee of Kalman 
filters, where each individual filter approximates a particular mode, to produce 
a more accurate approximation (Bar-Shalom and Li 1993, Kadirkamanathan and 
Kadirkamanathan 1995). The parameter covariances of the individual estimators 
may be used to determine the contribution of each estimator to the committee. In 
addition, the parameter covariances serve the purpose of placing confidence intervals 
on the output prediction. 

3 TRAINING MLPs WITH THE EKF 

One of the earliest implementations of EKF trained MLPs is due to Singhal and 
Wu (Singhal and Wu 1988). In their method, the network weights are grouped 
into a single vector w that is updated in accordance with the EKF equations. The 
entries of the Jacobian matrix are calculated by back-propagating the m output 
values through the network. 

The algorithm proposed by Singhal and Wu requires a considerable computational 
effort. The complexity is of the order mq2 multiplications per estimation step. Shah, 
Palmieri and Datum (1992) and Puskorius and Feldkamp (1991) have proposed 
strategies for decoupling the global EKF estimation algorithm into local EKF esti­
mation sub-problems, thereby reducing the computational time. The EKF is an im­
provement over conventional MLP estimation techniques, such as back-propagation, 
in that it makes use of second order statistics (covariances). These statistics are 
essential for placing error bars on the predictions and for combining separate net­
works into committees of networks. Further, it has been proven elsewhere that the 
back-propagation algorithm is simply a degenerate of the EKF algorithm (Ruck, 
Rogers, Kabrisky, Maybeck and Oxley 1992). 

However, the EKF algorithm for training MLPs suffers from serious difficulties, 
namely choosing the initial conditions (wo, Po) and the noise covariance matrices 
Rand Q. In this work, we propose the use of maximum likelihood techniques, 
such as back-propagation computed over a small set of initial data, to initialise the 
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EKF-MLP estimator. The following two subsections· describe ways of overcoming 
the difficulty of choosing R and Q. 

3.1 ELIMINATING Q BY UPDATING P WITH 
BACK-PROPAGATION . 

To circumvent the problem of choosing the process noise covariance Q, while at the 
same time increasing computational efficiency, it is possible to extend an algorithm 
proposed by Sutton (Sutton 1992) to the nonlinear case. In doing so, the weights co­
variance is approximated by a diagonal matrix with entries given by pqq = exp(,8q), 
where,8 is updated by error back-propagation (de Freitas, Niranjan and Gee 1997). 

The Kalman gain K k and the weights estimate Wk are updated using a variation of 
the Kalman equations, where the Kalman gain and weights update equations are 
independent of Q (Gelb 1984), while the weights covariance P is updated by back­
propagation. This algorithm lessens the burden of choosing the matrix Q by only 
having to choose the learning rate scalar 1]. The performance of the EKF algorithm 
with P updated by back-propagation will be analysed in Section 4. 

3.2 KALMAN FILTERING AND BAYESIAN TECHNIQUES 

A further improvement on the EKF algorithm for training MLPs would be to update 
Rand Q automatically each estimation step. This can be done by borrowing some 
ideas from the Bayesian estimation field. In particular, we shall attempt to link 
Mackay's work (Mackay 1992, Mackay 1994) on Bayesian estimation for neural 
networks with the EKF estimation framework. This theoretical link should serve 
to enhance both methods. 

Mackay expresses the prior, likelihood and posterior density functions in terms of 
the following Gaussian approximations: 

1 (a 2 
p(w) = (27r)q/2a -q/2 exp - "2llwll ) (7) 

1 ,8~ A 2 
p(Yklw) = (27r)n/2,8-n/2 exp ( - "2 L.,..(Yk - fn,q(w, <Pk)) ) 

k=l 

(8) 

1 1 T 
p(wIYk ) = (27r)q/2IAI-1/ 2 exp ( - 2(w - WMP) A(w - WMP)) (9) 

where in,q(w, <Pk) represents the estimator and the hyper-parameters a and ,8 con­
trol the variance of the prior distribution of weights and the variance of the mea­
surement noise. a also plays the role of the regularisation coefficient. The posterior 
is obtained by approximating it with a Gaussian function, whose mean wMP is given 
by a minimum of the following regularised error function: 

a ,8~ A 2 
S(w) = "2llwl12 + "2 L.,..(Yk - fn,q(w, <Pk)) 

k==l 

(10) 

The posterior covariance A is the Hessian of the above error function. 

In Mackay's estimation framework, also known as the evidence framework, the 
parameters ware obtained by minimising equation (10), while the hyper-parameters 
a and ,8 are obtained by maximising the evidence p(Yk la,,8) after approximating 
the posterior density function by a Gaussian function. In doing so, the following 
recursive formulas for a and ,8 are obtained: 

'1 n-'1 
ak+1 = L:q 2 and ,8k+1 = n A 2 

i=l Wi L::k=l (Yk - in,q(Wk, <Pk)) 
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The quantity 'Y represents the effective number of parameters 'Y = 2J~=1 >.:~a' where 
the Ai correspond to the eigenvalues of the Hessian of the error function without 
the regularisation term. 

Instead of adopting Mackay's evidence framework, it is possible to maximise the 
posterior density function by performing integrations over the hyper-parameters 
analytically (Buntine and Weigend 1991, Mackay 1994). The latter approach is 
known as the MAP framework for 0 and {3. The hyper-parameters computed by 
the MAP framework differ from the ones computed by the evidence framework in 
that the former makes use of the total number of parameters and not only the 
effective number of parameters. That is, 0 and {3 are updated according to: 

q n 
Ok+l = ",q 2 and {3k+1 = n A 2 

L.,..i=l Wi l:k=l (Yk - /n,q(Wk , <Pk)) 

By comparing the equations for the prior, likelihood and posterior density functions 
in the Kalman filtering framework (Ho and Lee 1964) with equations (7), (8) and 
(9) we can establish the following relations: 

P=A- 1 , Q=o-IIq_A- 1 and R={3-1Im 

where Iq and 1m represent identity matrices of sizes q and m respectively. Therefore, 
it is possible to update Q and R sequentially by expressing them in terms of the 
sequential updates of 0 and {3. 

-60~--:'::10---::2'=""0 - ::'::30- --=4'=""0 -::'::5o----:6O':--7=o----:8o~-90:'::---,-'100 
I 

-~-8~10~-82~0-~~-M~0--~~-860~-8~70---880~-8~90-~900 
I 

Figure 1: Prediction using the conventional EKF algorithm for a network with 20 
hidden neurons. Actual output [ . . . J and estimated output [-J. 

4 RESULTS 

To compare the performance of the conventional EKF algorithm, the EKF algo­
rithm with P updated by back-propagation, and the EKF algorithm with Rand 
Q updated sequentially according to the Bayesian MAP framework, noisy data was 
generated from the following nonlinear, non-stationary, multivariate process: 

(t) - { Xl (t) + X2 (t) + v(t) 1 ::; t ::; 200 
Y - 4sin(xdt)) + X2(t) sin(0.03(t - 200)) + v(t} 200 < t ::; 1000 
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where the inputs Xi are uniformly distributed random sequences with variance equal . 
to 1 and v(t) corresponds to uniformly distributed noise with variance equal to 0.1. 
Figure 1 shows the prediction obtained using the conventional EKF algorithm. To 
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Figure 2: Output error for the conventional EKF algorithm [ . .. ], the EKF algorithm 
with P updated by back-propagation [- . -], the EKF algorithm with Rand Q 
updated sequentially according to the Bayesian MAP framework [-], and the EKF 
algorithm with the Bayesian evidence framework [- - -] . 

compare the four estimation frameworks, an MLP with 20 neurons in the hidden 
layer was selected. The initial conditions were obtained by using back-propagation 
on the first 100 samples and assigning to P a diagonal matrix with diagonal elements 
equal to 10. The matrices R and Q in the conventional EKF algorithm were chosen, 
by trial and error, to be identity matrices. In the EKF algorithm with P updated 
by back-propagation, R was chosen to be equal to the identity matrix, while the 
learning rate was set to 0.01. Finally, in the EKF algorithm with Rand Q updated 
sequentially, the initial Rand Q matrices were chosen to be identity matrices. The 
prediction errors obtained for each method with random input data are shown in 
Figure 2. 

It is difficult to make a fair comparison between the four nonlinear estimation 
methods because their parameters were optimised independently. However, the 
results suggest that the prediction obtained with the conventional EKF training 
outperforms the predictions of the other methods. This may be attributed to the 
facts that, firstly, in this simple problem it is possible to guess the optimal values for 
Rand Q and, secondly, the algorithms to update the noise covariances may affect 
the regularisation performance of the EKF algorithm. This issue, and possible 
solutions, is explored in depth by the authors in (de Freitas et al. 1997). 

5 Conclusions 

In this paper, we point out the links between Kalman filtering, gradient descent 
algorithms with variable learning rates and Bayesian estimation. This results in two 
algorithms for eliminating the problem of choosing the initial conditions and the 
noise covariance matrices in the training of MLPs with the EKF. These algorithms 
are illustrated on a toy problem here, but more extensive experiments have been 
reported in (de Freitas et al. 1997). 

Improved estimates may be readily obtained by combining the estimators into com-
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mit tees or extending the training methods to recurrent networks. Finally, the com­
putational time may be reduced by decoupling the network weights. 
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