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Abstract 

A Lyapunov function for excitatory-inhibitory networks is constructed. 
The construction assumes symmetric interactions within excitatory and 
inhibitory populations of neurons, and antisymmetric interactions be
tween populations. The Lyapunov function yields sufficient conditions 
for the global asymptotic stability of fixed points. If these conditions 
are violated, limit cycles may be stable. The relations of the Lyapunov 
function to optimization theory and classical mechanics are revealed by 
minimax and dissipative Hamiltonian forms of the network dynamics. 

The dynamics of a neural network with symmetric interactions provably converges to 
fixed points under very general assumptions[l, 2]. This mathematical result helped 
to establish the paradigm of neural computation with fixed point attractors[3]. But 
in reality, interactions between neurons in the brain are asymmetric. Furthermore, 
the dynamical behaviors seen in the brain are not confined to fixed point attractors, 
but also include oscillations and complex nonperiodic behavior. These other types 
of dynamics can be realized by asymmetric networks, and may be useful for neural 
computation. For these reasons, it is important to understand the global behavior 
of asymmetric neural networks. 

The interaction between an excitatory neuron and an inhibitory neuron is clearly 
asymmetric. Here we consider a class of networks that incorporates this fundamen
tal asymmetry of the brain's microcircuitry. Networks of this class have distinct 
populations of excitatory and inhibitory neurons, with antisymmetric interactions 
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between populations and symmetric interactions within each population. Such net
works display a rich repertoire of dynamical behaviors including fixed points, limit 
cycles[4, 5] and traveling waves[6]. 

After defining the class of excitatory-inhibitory networks, we introduce a Lyapunov 
function that establishes sufficient conditions for the global asymptotic stability 
of fixed points. The generality of these conditions contrasts with the restricted 
nature of previous convergence results, which applied only to linear networks[5]' or 
to nonlinear networks with infinitely fast inhibition[7]. 

The use of the Lyapunov function is illustrated with a competitive or winner-take-all 
network, which consists of an excitatory population of neurons with recurrent inhi
bition from a single neuron[8]. For this network, the sufficient conditions for global 
stability of fixed points also happen to be necessary conditions. In other words, 
we have proved global stability over the largest possible parameter regime in which 
it holds, demonstrating the power of the Lyapunov function. There exists another 
parameter regime in which numerical simulations display limit cycle oscillations[7]. 

Similar convergence proofs for other excitatory-inhibitory networks may be obtained 
by tedious but straightforward calculations. All the necessary tools are given in the 
first half of the paper. But the rest of the paper explains what makes the Lyapunov 
function especially interesting, beyond the convergence results it yields: its role in 
a conceptual framework that relates excitatory-inhibitory networks to optimization 
theory and classical mechanics. 

The connection between neural networks and optimization[3] was established by 
proofs that symmetric networks could find minima of objective functions[l, 2]. Later 
it was discovered that excitatory-inhibitory networks could perform the minimax 
computation of finding saddle points[9, 10, 11], though no general proof of this was 
given at the time. Our Lyapunov function finally supplies such a proof, and one of 
its components is the objective function of the network's minimax computation. 

Our Lyapunov function can also be obtained by writing the dynamics of excitatory
inhibitory networks in Hamiltonian form, with extra velocity-dependent terms. If 
these extra terms are dissipative, then the energy of the system is nonincreasing, 
and is a Lyapunov function. If the extra terms are not purely dissipative, limit 
cycles are possible. Previous Hamiltonian formalisms for neural networks made 
the more restrictive assumption of purely antisymmetric interactions, and did not 
include the effect of dissipation[12]. 

This paper establishes sufficient conditions for global asymptotic stability of fixed 
points. The problem of finding sufficient conditions for oscillatory and chaotic 
behavior remains open. The perspectives of minimax and Hamiltonian dynamics 
may help in this task. 

1 EXCITATORY-INHIBITORY NETWORKS 

The dynamics of an excitatory-inhibitory network is defined by 

TxX+X f(u+Ax-By) , 

TyY+y = g(v+BTx-Cy). 

(1) 

(2) 

The state variables are contained in two vectors x E Rm and y E Rn, which represent 
the activities of the excitatory and inhibitory neurons, respectively. 

The symbol f is used in both scalar and vector contexts. The scalar function 
f : R ~ R is monotonic nondecreasing. The vector function f : Rm ~ Rm is 
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defined by applying the scalar function 1 to each component of a vector argument, 
i.e., l(x) = (J(xt) , ... ,1(xm)). The symbol 9 is used similarly. 

The symmetry of interaction within each population is imposed by the constraints 
A = AT and C = CT. The antisymmetry of interaction between populations is 
manifest in the occurrence of - B and BT in the equations. The terms "excitatory" 
and "inhibitory" are appropriate with the additional constraint that the entries of 
matrices A, B, and C are nonnegative. Though this assumption makes sense in 
a neurobiological context the mathematics does not depends on it. The constant 
vectors u and v represent tonic input from external sources, or alternatively bias 
intrinsic to the neurons. 

The time constants Tz and Ty set the speed of excitatory and inhibitory synapses, 
respectively. In the limit of infinitely fast inhibition, Ty = 0, the convergence 
theorems for symmetric networks are applicable[l, 2], though some effort is required 
in applying them to the case C =/; 0. If the dynamics converges for Ty = 0, then 
there exists some neighborhood of zero in which it still converges[7]. Our Lyapunov 
function goes further, as it is valid for more general T y • 

The potential for oscillatory behavior in excitatory-inhibitory networks like (1) has 
long been known[4, 7]. The origin of oscillations can be understood from a simple 
two neuron model. Suppose that neuron 1 excites neuron 2, and receives inhibition 
back from neuron 2. Then the effect is that neuron 1 suppresses its own activity 
with an effective delay that depends on the time constant of inhibition. If this delay 
is long enough, oscillations result. However, these oscillations will die down to a 
fixed point, as the inhibition tends to dampen activity in the circuit. Only if neuron 
1 also excites itself can the oscillations become sustained. 

Therefore, whether oscillations are damped or sustained depends on the choice of 
parameters. In this paper we establish sufficient conditions for the global stability of 
fixed points in (1). The violation of these sufficient conditions indicates parameter 
regimes in which there may be other types of asymptotic behavior, such as limit 
cycles. 

2 LYAPUNOV FUNCTION 

We will assume that 1 and 9 are smooth and that their inverses 1-1 and g-1 exist. 
If the function 1 is bounded above and/or below, then its inverse 1-1 is defined on 
the appropriate subinterval of R. Note that the set of (x, y) lying in the range of 
(J,g) is a positive invariant set under (1) and that its closure is a global attractor 
for the system. 

The scalar function F is defined as the antiderivative of 1, and P as the Legendre 
transform P(x) maxp{px - F(p)}. The derivatives of these conjugate convex 
functions are, 

F'(x) = l(x) , (3) 

The vector versions of these functions are defined componentwise, as in the definition 
of the vector version of 1. The conjugate convex pair G, (; is defined similarly. 

The Lyapunov function requires generalizations of the standard kinetic energies 
Tzx2/2 and Tyy2/2. These are constructed using the functions ~ : Rm x Rm ~ R 
and r : Rn x Rn ~ R, defined by 

~(p,x) 

r(q,y) 

= ITF(p) -xTp+lTP(x) , 

ITG(q) _yTq+ IT(;(y) . 

(4) 

(5) 
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The components of the vector 1 are all ones; its dimensionality should be clear 
from context. The function ~(p, x) is lower bounded by zero, and vanishes on 
the manifold I(p) = x, by the definition of the Legendre transform. Setting p = 
U + Ax - By, we obtain the generalized kinetic energy T;l~(u + Ax - By, x), which 
vanishes when x = 0 and is positive otherwise. It reduces to T;xx 2 /2 in the special 
case where I is the identity function. 

To construct the Lyapunov function, a multiple of the saddle function 

S = _uT x - !xT Ax + vT Y - !yTCy + ITP(x) + yTBT x - ITG(y) (6) 
2 2 

is added to the kinetic energy. The reason for the name "saddle function" will be 
explained later. Then 

L = T;l~(U + Ax - By,x) + T;lr(v + BT x - Cy, y) + rS (7) 

is a Lyapunov function provided that it is lower bounded, nonincreasing, and t only 
vanishes at fixed points of the dynamics. Roughly speaking, this is enough to prove 
the global asymptotic stability of fixed points, although some additional technical 
details may be involved. 

In the next section, the Lyapunov function will be applied to an example network, 
yielding sufficient conditions for the global asymptotic stability of fixed points. 
In this particular network, the sufficient conditions also happen to be necessary 
conditions. Therefore the Lyapunov function succeeds in delineating the largest 
possible parameter regime in which point attractors are globally stable. Of course, 
there is no guarantee of this in general, but the power of the Lyapunov function is 
manifest in this instance. 

Before proceeding to the example network, we pause to state some general conditions 
for L to be nonincreasing. A lengthy but straightforward calculation shows that 
the time derivative of L is given by 

t = xT Ax - iJTCiJ (8) 

_(T;l + r)j;T(J-l (T;xX + x) - I-I (x)J 

_(T;l - r)iJT[g-l(TyiJ + y) - g-l(y)J . 

Therefore, L is nonincreasing provided that 

(a-b)TA(a-b) 
max ( T [ < 1 + rT z , 

a,b a - b) I-l(a) - I-l(b)] 
(9) 

. (a - b)TC(a - b) 
mm T[ > 1 - rTy . 
a,b (a - b) g-l(a) - g-l(b)] 

(10) 

The quotients in these inequalities are generalizations of the Rayleigh-Ritz ratios of 
A and C. If I and 9 were linear, the left hand sides of these inequalities would be 
equal to the maximum eigenvalue of A and the minimum eigenvalue of C. 

3 AN EXAMPLE: COMPETITIVE NETWORK 

The competitive or winner-take-all network is a classic example of an excitatory
inhibitory network[8, 7J . Its population of excitatory neurons Xi receives self
feedback of strength a and recurrent feedback from a single inhibitory neuron y, 

Tzii + Xi I(Ui + aXi - y) , (11) 

T.Y + y = 9 ( ~>i) . (12) 
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This is a special case of (1), with A = aI, B = 1, and C = o. 
The global inhibitory neuron mediates a competitive interaction between the exci
tatory neurons. If the competition is very strong, a single excitatory neuron "wins," 
shutting off all the rest. If the competition is weak, more than one excitatory neuron 
can win, usually those corresponding to the larger Ui. Depending on the choice of f 
and g, self-feedback a, and time scales Tx and Ty, this network exhibits a variety of 
dynamical behaviors, including a single point attractor, multiple point attractors, 
and limit cycles[5, 7]. 

We will consider the specific case where f and 9 are the rectification nonlinearity 
[x]+ == max{ x, o}. The behavior ofthis network will be described in detail elsewhere; 
only a brief summary is given here. With either of two convenient choices for r, 
r = T;1 or r = a - T;1, it can be shown that the resulting L is bounded below 
for a < 2 and nonincreasing for a < T;1 + T;1. These are sufficient conditions for 
the global stability of fixed points. They also turn out to be necessary conditions, 
as it can be verified that the fixed points are locally unstable if the conditions are 
violated. The behaviors in the parameter regime defined by these conditions can 
be divided into two rough categories. For a < 1, there is a unique point attractor, 
at which more than one excitatory neuron can be active, in a soft form of winner
take-all. For a > 1, more than one point attractor may exist. Only one excitatory 
neuron is active at each of these fixed points, a hard form of winner-take-all. 

4 MINIMAX DYNAMICS 

In the field of optimization, gradient descent-ascent is a standard method for finding 
saddle points of an objective function. This section of the paper explains the close 
relationship between gradient descent-ascent and excitatory-inhibitory networks[9, 
10]. Furthermore, it reviews existing results on the convergence of gradient descent
ascent to saddle points[13, 10], which are the precedents of the convergence proofs 
of this paper. 

The similarity of excitatory-inhibitory networks to gradient descent-ascent can be 
seen by comparing the partial derivatives of the saddle function (6) to the velocities 
x and ii, 

as 
- ax 

as 
ay 

(13) 

(14) 

The notation a '" b means that the vectors a and b have the same signs, component 
by component. Because f and 9 are monotonic nondecreasing functions, x has the 
same signs as -as/ax, while iJ has the same signs as as/ay. In other words, the 
dynamics of the excitatory neurons tends to minimize S, while that of the inhibitory 
neurons tends to maximize S. 

If the sign relation", is replaced by equality in (13), we obtain a true gradient 
descent-ascent dynamics, 

. as . as ( 5) TxX = - ax ' Tyy = ay . 1 

Sufficient conditions for convergence of gradient descent-ascent to saddle points 
are known[13, 10]. The conditions can be derived using a Lyapunov function con
structed from the kinetic energy and the saddle function, 

L = ~Txlxl2 + ~Tylill2 + rS . (16) 
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The time derivative of L is given by 

L· 'T82S. 'T82S . ·2 · 2 (17) = -x 8x2 X + y 8y2 Y - rTxx + rTyy . 

Weak sufficient conditions can be derived with the choice r = 0, so that L includes 
only kinetic energy terms. Then L is obviously lower bounded by zero. Furthermore, 
L is nonincreasing if 82 S /8x2 is positive definite for all y and 82 S / 8y2 is negative 
definite for all x. In this case, the existence of a unique saddle point is guaranteed, 
as S is convex in x for all y , and concave in y for all x[13, 10]. 

If there is more than one saddle point, the kinetic energy by itself is generally not 
a Lyapunov function. This is because the dynamics may pass through the vicinity 
of more than one saddle point before it finally converges, so that the kinetic energy 
behaves nonmonotonically as a function of time. In this situation, some appropriate 
nonzero r must be found. 

The Lyapunov function (7) for excitatory-inhibitory networks is a generalization 
of the Lyapunov function (16) for gradient descent-ascent. This is analogous to 
the way in which the Lyapunov function for symmetric networks generalizes the 
potential function of gradient descent. 

It should be noted that gradient descent-ascent is an unreliable way of finding a 
saddle point. It is easy to construct situations in which it leads to a limit cycle. 
The unreliability of gradient descent-ascent contrasts with the reliability of gradient 
descent at finding local minimum of a potential function. Similarly, symmetric 
networks converge to fixed points, but excitatory-inhibitory networks can converge 
to limit cycles as well. 

5 HAMILTONIAN DYNAMICS 

The dynamics of an excitatory-inhibitory network can be written in a dissipative 
Hamiltonian form. To do this, we define a phase space that is double the dimension 
ofthe state space, adding momenta (Px,Py) that are canonically conjugate to (x, y). 
The phase space dynamics 

TxX + X - f(Px) , (18) 

TyY + y = g(py) , (19) 

(r+ :t) (u+Ax-By-px) = o , (20) 

(r+ !) (v+BTx-Cy-py) - o , (21) 

reduces to the state space dynamics (1) on the affine space A = {(Px, PY' x, y) : Px = 
u + Ax - By,py = v + BTx - Cy}. Provided that r > 0, the affine space A is an 
attractive invariant manifold. 

Defining the Hamiltonian 

H(px, X'PY' y) = T;l~(Px, x) + T;lr(py, y) + rS(x, y) , 

the phase space dynamics (18) can be written as 

8H 
8px ' 
8H 
8py , 

(22) 

(23) 

(24) 
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Py = 

- ~~ + Ax - By - (r;l + r)[pX - i-leX)] , 

_ BH + BT x _ Gy _ (r- l _ r)r~ _ g-l(y)] 
By y lJ'y 

+2r(v+BT x-Gy-py) . 

335 

(25) 

(26) 

(27) 

On the invariant manifold A, the Hamiltonian is identical to the Lyapunov function 
(7) defined previously. 

The rate of change of the energy is given by 

H - xT Ax - (r;l + r)xT[px - i-lex)] 
-yTGy _ (r;l _ r)yT[py _ g-l(y)] 

+2ryT(v + BT x - Gy - Py) . 

(28) 

The last term vanishes on the invariant manifold, leaving a result identical to (8). 
Therefore, if the noncanonical terms in the phase space dynamics (18) dissipate 
energy, then the Hamiltonian is nonincreasing. It is also possible that the velocity
dependent terms may pump energy into the system, rather than dissipate it, in 
which case oscillations or chaotic behavior may arise. 
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