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Abstract

We consider the general problem of learning multi-category classifi-
cation from labeled examples. We present experimental results for
a nearest neighbor algorithm which actively selects samples from
different pattern classes according to a querying rule instead of the
a priori class probabilities. The amount of improvement of this
query-based approach over the passive batch approach depends on
the complexity of the Bayes rule. The principle on which this al-
gorithm is based is general enough to be used in any learning algo-
rithm which permits a model-selection criterion and for which the
error rate of the classifier is calculable in terms of the complexity
of the model.

1 INTRODUCTION

We consider the general problem of learning multi-category classification from la-
beled examples. In many practical learning settings the time or sample size available
for training are limited. This may have adverse effects on the accuracy of the result-
ing classifier. For instance, in learning to recognize handwritten characters typical
time limitation confines the training sample size to be of the order of a few hundred
examples. It is important to make learning more efficient by obtaining only training
data which contains significant information about the separability of the pattern
classes thereby letting the learning algorithm participate actively in the sampling
process. Querying for the class labels of specificly selected examples in the input
space may lead to significant improvements in the generalization error (cf. Cohn,
Atlas & Ladner, 1994, Cohn, 1996). However in learning pattern recognition this
is not always useful or possible. In the handwritten recognition problem, the com-
puter could ask the user for labels of selected patterns generated by the computer
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however labeling such patterns are not necessarily representative of his handwriting
style but rather of his reading recognition ability. On the other hand it is possi-
ble to let the computer (learner) select particular pattern classes, not necessarily
according to their a priori probabilities, and then obtain randomly drawn patterns
according to the underlying unknown class-conditional probability distribution. We
refer to such selective sampling as sample querying. Recent theory (cf. Ratsaby,
1997) indicates that such freedom to select different classes at any time during the
training stage is beneficial to the accuracy of the classifier learnt. In the current
paper we report on experimental results for an incremental algorithm which utilizes
this sample-querying procedure.

2 THEORETICAL BACKGROUND

We use the following setting: Given M distinct pattern classes each with a class
conditional probability density f;(z), 1 <i< M,z € R?, and a priori probabilities
pi, 1 < i< M. The functions f;(z), 1 <i < M, are assumed to be unknown while
the p; are assumed to be known or easily estimable as is the case of learning character
recognition. For a sample-size vector m = [m,, ..., mps] where Zﬁi m; = T denote
by (™= {(x_,‘,yj)}ﬁl a sample of labeled examples consisting of m; example from
pattern class ¢ where y;, 1 < j < m, are chosen not necessarily at random from
{1,2,..., M}, and the corresponding z; are drawn at random 1.i.d. according to the
class conditional probability density fy (z). The expected misclassification error of
a classifier c is referred to as the loss of ¢ and is denoted by L(c). It is defined as the
probability of misclassification of a randomly drawn z with respect to the underlying
mixture probability density function f(z) = Egl pifi(z). The loss is commonly
represented as L(c) = El{z.o(x)#y(x)}, Where 1{;¢ 4y} is the indicator function of a set
A, expectation is taken with respect to the joint probability distribution f,(z)p(y)
where p(y) is a discrete probability distribution taking values p; over 1 < i < M,
while y denotes the label of the class whose distribution f,(z) was used to draw z.
The loss L(c) may also be written as L(c) = Zf__l piEil{c(z)zi} where E; denotes
expectation with respect to f;(z). The pattern recognition problem is to learn based

on (™ the optimal classifier, also known as the Bayes classifier, which by definition
has minimum loss which we denote by L*.

A multi-category classifier ¢ is represented as a vector ¢(z) = [e1(2),...,em(Z))
of boolean classifiers, where ¢i(z) = 1 if e(z) = 7, and ¢;(z) = 0 otherwise, 1 <
i < M. The loss L(c) of a multi-category classifier ¢ may then be expressed as
the average of the losses of its component classifiers, i.e., L(c) = Eglp,:L(c,-)
where for a boolean classifier ¢; the loss is defined as L(c¢;) = Eiljc, ()21} As
an estimate of L(c) we define the empirical loss Ly,(c) = E?L piLm,(c) where
Ly (€¢) = m‘L‘Zj:yjzi l{c(z,)#i} Which may also can be expressed as L, (c;) =
mr Ljiay=i Uee)#1)

The family of all classifiers is assumed to be decomposed into a multi-structure
S = 8; xS x --- x Sy, where S; is a nested structure (cf. Vapnik, 1982) of
boolean families By, , ji = 1,2,...,for 1 <i <M, ie, Sy = Bi,, By, ... B, - -
Sy = By, ,Bk,,...,Bk,,,-.., up to Sy = By, ,By,,...,Bx,,, ..., where k; € Zy
denotes the VC-dimension of B, and By, C B, ,,, 1 <1 < M. For any fixed
positive integer vector j € Zf consider the class of vector classifiers Hy(;) =
By, x Bg,, X ---x By, = Hi where we take the liberty in dropping the multi-
index j and write k instead of k(7). Define by Gi the subfamily of H; consisting



614 J. Ratsaby

of classifiers ¢ that are well-defined, i.e., ones whose components ¢;, 1 < < M
satisfy U:-El{z cei(z) = 1} = R? and {z : ei(z) = 1}N{z : ¢j(z) = 1} = 0, for
1<i#j<M.

From the Vapnik-Chervonenkis theory (cf. Vapnik, 1982, Devroye, Gyorfi & Lu-
gosi, 1996) it follows that the loss of any boolean classifier ¢; € By, is, with
high confidence, related to its empirical loss as L(¢;) < Ly, (ci) + €(m;, kj,) where
e(mi, k;) = const \/k;j Inm;/m;, 1 < i < M, where henceforth we denote by
const any constant which does not depend on the relevant variables in the expres-
sion. Let the vectors m = [my,...,mpy] and k = k(j) = [kj,,..., kj,\] In Zf.

Define €(m, k) = E?il pie(m;, k;.). It follows that the deviation between the em-
pirical loss and the loss is bounded uniformly over all multi-category classifiers in
a class Gy by €(m, k). We henceforth denote by c; the optimal classifier in G, 1.e.,
c; = argmin,gg, L(c) and é = argmin,cg, Lm(c) is the empirical loss minimizer
over the class G;.

The above implies that the classifier ¢; has a loss which is no more than L(c}) +
€(m, k). Denote by k* the minimal complexity of a class G which contains the
Bayes classifier. We refer to it as the Bayes complezilty and henceforth assume
k¥ < 00,1 <i< M. If k* was known then based on a sample of size T with a
sample size vector m = [my,...,mps] a classifier ¢g» whose loss is bounded from
above by L* + ¢(m,k*) may be determined where L* = L(c}.) is the Bayes loss.
This bound is minimal with respect to k by definition of k* and we refer to it as the
manimal criterion. It can be further minimized by selecting a sample of size vector
m* = argmin meZl: M m‘:ﬁ]e(m,k*). This basically says that more examples

should be queried from pattern classes which require more complex discriminating
rules within the Bayes classifier. Thus sample-querying via minimization of the
minimal criterion makes learning more efficient through tuning the subsample sizes
to the complexity of the Bayes classifier. However the Bayes classifier depends
on the underlying probability distributions which in most interesting scenarios are
unknown thus k* should be assumed unknown. In (Ratsaby, 1997) an incremental
learning algorithm, based on Vapnik’s structural risk minimization, generates a
random complexity sequence k(n), corresponding to a sequence of empirical loss
minimizers é,i-(n) over g,;(n ) which converges to k* with increasing time n for learning
problems with a zero Bayes loss. Based on this, a sample-query rule which achieves
the same minimization is defined without the need to know k*. We briefly describe
the main ideas next.

At any time n, the criterion function is (-, k(n)) and is defined over the m-domain
ET. A gradient descent step of a fixed size is taken to minimize the current cri-
terion. After a step is taken, a new sample-size vector m(n + 1) is obtained and
the difference m(n + 1) — m(n) dictates the sample-query at time n, namely, the
increment in subsample size for each of the M pattern classes. With increasing n
the vector sequence m(n) gets closer to an optimal path defined as the set which
is comprised of the solutions to the minimization of €(m, k*) under all different
constraints of z:‘il m; = m, where m runs over the positive integers. Thus for
all large n the sample-size vector m(n) is optimal in that it minimizes the minimal
criterion €(-, k™) for the current total sample size 72(n). This constitutes the sample-
querying procedure of the learning algorithm. The remaining part does empirical
loss minimization over the current class gi(n) and outputs éé(n)' By assumption,
since the Bayes classifier is contained in Gi-, it follows that for all large n, the loss
L(éé(ﬂ]) <L+ min{mez’f’Z:‘iI ——— €(m, k*), which is basically the minimal

criterion mentioned above. Thus the algorithm produces a classifier éé(n] with a
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minimal loss even when the Bayes complexity k£* is unknown.

In the next section we consider specific model classes consisting of nearest-neighbor
classifiers on which we implement this incremental learning approach.

3 INCREMENTAL NEAREST-NEIGHBOR
ALGORITHM

Fix and Hodges , cf. Silverman & Jones (1989). introduced the simple but powerful

nearest-neighbor classifier which based on a labeled training sample {(r;, )},

i €RY y € {1,2,..., M}, when given a pattern z, it outputs the label y; corre-
sponding to the example whose &; is closest to . Every example in the training
sample is used for this decision (we denote such an example as a profotype) thus
the empirical loss is zero. The condensed nearest-neighbor algorithm (Hart, 1968)
and the reduced nearest neighbor algorithm (Gates, 1972) are procedures which
aim at reducing the number of prototypes while maintaining a zero empirical loss.
Thus given a training sample of size m, after running either of these procedures, a
nearest neighbor classifier having a zero empirical loss is generated based on 5 < m
prototypes. Learning in this manner may be viewed as a form of empirical loss
minimization with a complexity regularization component which puts a penalty
proportional to the number of prototypes.

A cell boundary e;; of the voronoi diagram (cf. Preparata & Shamos, 1985)
corresponding to a multi-category nearest-neighbor classifier ¢ is defined as the
(d — 1)-dimensional perpendicular-bisector hyperplane of the line connecting the
z-component of two prototypes z; and z;. For a fixed { € {1,..., M}, the collection
of voronoi cell-boundaries based on pairs of prototypes of the form (z;,1), (z;,q)
where ¢ # [, forms the boundary which separates the decision region labeled { from
its complement and represents the boolean nearest-neighbor classifier ¢;. Denote
by k; the number of such cell-boundaries and denote by s; the number of proto-
types from a total of m; examples from pattern class [. The value of k; may be
calculated directly from the knowledge of the s; prototypes, 1 < | < M, using
various algorithms. The boolean classifier ¢; is an element of an infinite class of
boolean classifiers based on partitions of R? by arrangements of k; hyperplanes of
dimensionality d — 1 where each of the cells of a partition is labeled either 0 or 1.
It follows, c¢f. Devroye et. al. (1996), that the loss of a multi-category nearest-
neighbor classifier ¢ which consists of s; prototypes out of m; examples, 1 <[ < M,
is bounded as L(¢) < Lyn(¢) + €(m, k), where the a priori probabilities are taken as

known, m = [my,...,mp), k = [k1,... ,ksp) and e(m, k) = Efil pie(my, kp), where
e(my, ki) = const \/((d+ 1)k Inmy + (ek;/d)?) /my. Letting k* denote the Bayes
complexity then €(-, k*) represents the minimal criterion.

The next algorithm uses the Condense and Reduce procedures in order to generate a
sequence of classifiers Ci(n) with a complexity vector k(n) which tends to k* asn —

co. A sample-querying procedure referred to as Greedy Query (GQ) chooses at any
time n to increment the single subsample of pattern class j*(n) where mj«(,) is the

direction of maximum descent of the criterion (-, k(n)) at the current sample-size
vector m(n). For the part of the algorithm which utilizes a Delaunay-Triangulation
procedure we use the fast Fortune’s algorithm (cf. O’Rourke ) which can be used
only for dimensionality d = 2. Since all we are interested is in counting Voronoi
borders between all adjacent Voronoi cells then an efficient computation is possible
also for dimensions d > 2 by resorting to linear programming for computing the
adjacencies of facets of a polyhedron, cf. Fukuda (1997).












