
Balancing between bagging and bumping

Tom Heskes
RWCP Novel Functions SNN Laboratory; University of Nijmegen

Geert Grooteplein 21 , 6525 EZ Nijmegen, The Netherlands
tom@mbfys.kun.nl

Abstract

We compare different methods to combine predictions from neu
ral networks trained on different bootstrap samples of a regression
problem. One of these methods, introduced in [6] and which we
here call balancing, is based on the analysis of the ensemble gen
eralization error into an ambiguity term and a term incorporating
generalization performances of individual networks. We show how
to estimate these individual errors from the residuals on valida
tion patterns. Weighting factors for the different networks follow
from a quadratic programming problem. On a real-world problem
concerning the prediction of sales figures and on the well-known
Boston housing data set, balancing clearly outperforms other re
cently proposed alternatives as bagging [1] and bumping [8].

1 EARLY STOPPING AND BOOTSTRAPPING

Stopped training is a popular strategy to prevent overfitting in neural networks.
The complete data set is split up into a training and a validation set . Through
learning the weights are adapted in order to minimize the error on the training
data. Training is stopped when the error on the validation data starts increasing.
The final network depends on the accidental subdivision in training and validation
set , and often also on the, usually random, initial weight configuration and chosen
minimization procedure. In other words , early stopped neural networks are highly
unstable: small changes in the data or different initial conditions can produce large
changes in the estimate. As argued in [1 , 8], with unstable estimators it is advisable
to resample, i.e ., to apply the same procedure several times using different sub
divisions in training and validation set and perhaps starting from different initial

RWCP: Real World Computing Partnership; SNN: Foundation for Neural Networks.

Balancing Between Bagging and Bumping 467

configurations. In the neural network literature resampling is often referred to as
training ensembles of neural networks [3, 6]. In this paper, we will discuss methods
for combining the outputs of networks obtained through such a repetitive procedure.

First, however, we have to choose how to generate the subdivisions in training and
validation sets. Options are, among others, k-fold cross-validation, subsampling and
bootstrapping. In this paper we will consider bootstrapping [2] which is based on
the idea that the available data set is nothing but a particular realization of some
probability distribution. In principle, one would like to do inference on this "true"
yet unknown probability distribution. A natural thing to do is then to define an em
pirical distribution. With so-called naive bootstrapping the empirical distribution
is a sum of delta peaks on the available data points, each with probability content
l/Pdata with Pdata the number of patterns. A bootstrap sample is a collection of
Pdata patterns drawn with replacement from this empirical probability distribution.
Some of the data points will occur once, some twice and some even more than
twice in this bootstrap sample. The bootstrap sample is taken to be the training
set, all patterns that do not occur in a particular bootstrap sample constitute the
validation set. For large Pdata, the probability that a pattern becomes part of the
validation set is (1 - l/Pdata)Pda.ta. ~ l/e ~ 0.368. An advantage of bootstrapping
over other resampling techniques is that most statistical theory on resampling is
nowadays based on the bootstrap.

Using naive bootstrapping we generate nrun training and validation sets out of our
complete data set of Pdata input-output combinations {iI', tl'}. In this paper we
will restrict ourselves to regression problems with, for notational convenience, just
one output variable. We keep track of a matrix with components q; indicating
whether pattern p is part of the validation set for run i (q; = 1) or of the training
set (qf = 0). On each subdivision we train and stop a neural network with one
layer of nhidden hidden units. The output or of network i with weight vector w(i)
on input il' reads

o~
I + wo(i) ,

where we use the definition x~ == 1. The validation error for run i can be written

1 Pda.ta.
Evalidation(i) == -:- L qrr; ,

PI /.'=1

with Pi == L:/.' qf ~ 0.368 Pdata, the number of validation patterns m run z, and
r; == (or - ttl)2/2, the error of network i on pattern p.

After training we are left with nrun networks, with, in practice, quite different
performances on the complete data set. How should we combine all these outputs
to get the best possible performance on new data?

2 COMBINING ESTIMATORS

Several methods have been proposed to combine estimators (see e.g. (5) for a re
view). In this paper we will only consider estimators with the same architecture

468 T. Heskes

but trained and stopped on different subdivisions of the data in training and val
idation sets. Recently, two such methods have been suggested for bootstrapped
estimators: bagging [1], an acronym for bootstrap aggregating, and bumping [8],
meaning bootstrap umbrella of model parameters. With bagging, the prediction on
a newly arriving input vector is the average over all network predictions. Bagging
completely disregards the performance of the individual networks on the data used
for training and stopping. Bumping, on the other hand, throws away all networks
except the one with the lowest error on the complete data set 1 • In the following
we will describe an intermediate form due to [6], which we here call balancing. A
theoretical analysis of the implications of this idea can be found in [7].

Suppose that after training we receive a new set of Ptest test patterns for which we
do not know the true targets [II, but can calculate the network output OJ for each
network i. We give each network a weighting factor aj and define the prediction of
all networks on pattern 1/ as the weighted average

nrun
-II _ ~ -II
m = L- ajOi .

i=1

The goal is to find the weighting factors aj, subject to the constraints

nrun

L aj = 1 and aj ~ 0 Vj ,

j=1

yielding the smallest possible generalization error

1 Ptest

E - ~ (- II t-II) 2
test = -- L- m - .

Ptest 11:1

(1)

The problem, of course, is our ignorance about the targets [II. Bagging simply takes
ai = l/nrun for all networks, whereas bumping implies aj = din. with

1 Pd .. t ..

K. argmin -- L (or - t JJ)2 .
j Pdata JJ=1

As in [6, 7] we write the generalization error in the form

E test _1_ L L ajaj(or - [1I)(oj - [II)
Ptest .. II I,)

2p1 L L ajaj [(or - [11)2 + (oj - ill)2 - (or - oj)2]
test II j ,j

L ajaj [Etest(i) + Etest(j) - ~ L(or - 5j)2]. (2)
. . Ptest IJ II

The last term depends only on the network outputs and can thus be calculated.
This "ambiguity" term favors networks with conflicting outputs. The first part,

lThe idea behind bumping is more general and involved than discussed here. The
interested reader is referred to [8] . In this paper we will only consider its naive version.

Balancing Between Bagging and Bumping 469

containing the generalization errors Etest(i) for individual networks, depends on the
targets tV and is thus unknown. It favors networks that by themselves already have
a low generalization error. In the next section we will find reasonable estimates for
these generalization errors based on the network performances on validation data.
Once we have obtained these estimates, finding the optimal weighting factors Cti

under the constraints (1) is a straightforward quadratic programming problem.

3 ESTIMATING THE GENERALIZATION ERROR

At first sight, a good estimate for the generalization error of network i could be
the performance on the validation data not included during training. However,
the validation error Evalidation (i) strongly depends on the accidental subdivision in
training and validation set. For example, if there are a few outliers which, by pure
coincidence, are part of the validation set, the validation error will be relatively
large and the training error relatively small. To correct for this bias as a result
of the random subdivision, we introduce the "expected" validation error for run i.
First we define nil as the number of runs in which pattern J.l is part of the validation
set and E~alidation as the error averaged over these runs:

nrun 1 nrun

nil == L qf and E~alidation == nil ?= qf rf ,
i=1 .=1

The expected validation error then follows from

, 1 Pda.ta.

Evalidation (i) == --:- L qf E~alidation .
P. 11=1

The ratio between the observed and the expected validation error indicates whether
the validation error for network i is relatively high or low. Our estimate for the
generalization error of network i is this ratio multiplied by an overall scaling factor
being the estimated average generalization error:

E (.) 1 Pda.ta.
E (.) ~ validation t __ '"" Ell. .

test t , . ~ validation'
Evalidation (t) Pdata 11=1

Note that we implicitly make the assumption that the bias introduced by stopping
at the minimal error on the validation patterns is negligible, i.e., that the validation
patterns used for stopping a network can be considered as new to this network as
the completely independent test patterns.

4 SIMULATIONS

We compare the following methods for combining neural network outputs.

Individual: the average individual generalization error, i.e., the generalization er
ror we will get on average when we decide to perform only one run. It
serves as a reference with which the other methods will be compared.

Bumping: the generalization of the network with the lowest error on the data
available for training and stopping.

470 T. Heskes

unfair unfair

bumping bagging ambiguity balancing bumping balancing

store 1 4% 9% 10% 17 % 17 % 24 %

store 2 5% 15 % 22 % 23 % 23 % 34 %

store 3 -7 % 11% 18 % 25 % 25 % 36 %

store 4 6% 11% 17 % 26 % 26 % 31 %

store 5 6% 10% 22 % 19 % 22 % 26 %

store 6 1% 8% 14 % 19 % 16 % 26 %

mean 3%
)

11% 17 % 22 % 22 % 30 %

Table 1: Decrease in generalization error relative to the average individual general
ization error as a result of several methods for combining neural networks trained
to predict the sales figures for several stores.

Bagging: the generalization error when we take the average of all n run network
outputs as our prediction.

Ambiguity: the generalization error when the weighting factors are chosen to max
imize the ambiguity, i.e., taking identical estimates for the individual gen
eralization errors of all networks in expression (2).

Balancing: the generalization error when the weighting factors are chosen to min
imize our estimate of the generalization error.

Unfair bumping: the smallest generalization error for an individual error, i.e., the
result of bumping if we had indeed chosen the network with the smallest
generalization error.

Unfair balancing: the lowest possible generalization error that we could obtain if
we had perfect estimates of the individual generalization errors.

The last two methods, unfair bumping and unfair balancing, only serve as some
kind of reference and can never be used in practice.

We applied these methods on a real-world problem concerning the prediction of
sales figures for several department stores in the Netherlands. For each store, 100
networks with 4 hidden units were trained and stopped on bootstrap samples of
about 500 patterns. The test set, on which the performances of the various methods
for combination were measured, consists of about 100 patterns. Inputs include
weather conditions, day of the week, previous sales figures, and season. The results
are summarized in Table 1, where we give the decrease in the generalization error
relative to the average individual generalization error.

As can be seen in Table 1, bumping hardly improves the performance. The reason
is that the error on the data used for training and stopping is a lousy predictor of
the generalization error, since some amount of overfitting is inevitable. The general
ization performance obtained through bagging, i.e., first averaging over all outputs,
can be pro"en to be always better than the average individual generalization error.

Balancing Between Bagging and Bumping

80r---~----~--~----~-'

E
Q)

E 60
~
E
.§40
Q)
C>

~ 20
>
«I

O~--~----~----~--~~

o 20 40 60 80
number of replicates

471

~ 30 r-------..-------.-----~---~......,
E
~ 25 - -lIE
E lI('lIE- ""*- __ • - - -
a. .s 20

20 40 60
number of replicates

80

Figure 1: Decrease of generalization error relative to the average individual gen
eralization error as a function of the number of bootstrap replicates for different
combination methods: bagging (dashdot , star), ambiguity (dotted, star), bumping
(dashed, star), balancing (solid, star) , unfair bumping (dashed, circle), unfair bal
ancing (solid, circle). Shown are the mean (left) and the standard deviation (right)
of the decrease in percentages. Networks are trained and tested on the Boston
housing database.

On these data bagging is definitely better than bumping, but also worse than max
imizing the ambiguity. In all cases, except for store 5 where maximization of the
ambiguity is slightly better, balancing is a clear winner among the "fair" methods .
The last column in Table 1 shows how much better we can get if we could find more
accurate estimates for the generalization errors of individual networks.

The method of balancing discards most of the networks, i.e., the solution to the
quadratic programming problem (2) under constraints (1) yields just a few weighting
factors different from zero (on average about 8 for this set of simulations). Balancing
is thus indeed a compromise between bagging, taking all networks into acount , and
bumping, keeping just one network.

We also compared these methods on the well-known Boston housing data set con
cerning the median housing price in several tracts based on 13 mainly socio-economic
predictor variables (see e.g. [1] for more information). We left out 50 of the 506
available cases for assessment of the generalization performance. All other 456 cases
were used for training and stopping neural networks with 4 hidden units. The av
erage individual mean squared error over all 300 bootstrap runs is 16.2, which is
comparable to the mean squared error reported in [1]. To study how the perfor
mance depends on the number of bootstrap replicates , we randomly drew sets of
n = 5,10,20,40 and 80 bootstrap replicates out of our ensemble of 300 replicates
and applied the combination methods on these sets. For each n we did this 48
times. Figure 1 shows the mean decrease in the generalization error relative to the
average individual generalization error and its standard deviation .

Again, balancing comes out best , especially for a larger number of bootstrap repli
cates. It seems that beyond say 20 replicates both bumping and bagging are hardly
helped by more runs, whereas both maximization of the ambiguity and balancing
still increase their performance. Bagging, fully taking into account all network pre-

472 T. Heskes

dictions, yields the smallest variation, bumping, keeping just one of them, by far the
largest. Balancing and maximization of the ambiguity combine several predictions
and thus yield a variation that is somewhere in between.

5 CONCLUSION AND DISCUSSION

Balancing, a compromise between bagging and bumping, is an attempt to arrive
at better performances on regression problems. The crux in all this is to obtain
reasonable estimates for the quality of the different networks and to incorporate
these estimates in the calculation of the proper weighting factors (see [5, 9] for
similar ideas and related work in the context of stacked generalization).

Obtaining several estimators is computationally expensive. However, the notorious
instability offeedforward neural networks hardly leaves us a choice. Furthermore, an
ensemble of bootstrapped neural networks can also be used to deduce (approximate)
confidence and prediction intervals (see e.g. [4]), to estimate the relevance of input
fields and so on. It has also been argued that combination of several estimators
destroys the structure that may be present in a single estimator [8]. Having hardly
any interpretable structure, neural networks do not seem to have a lot they can lose.
It is a challenge to show that an ensemble of neural networks does not only give
more accurate predictions, but also reveals more information than a single network.

References

[1] L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.

[2] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall,
London, 1993.

[3] L. Hansen and P. Salomon. Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12:993-1001, 1990.

[4] T. Heskes. Practical confidence and prediction intervals. These proceedings,
1997.

[5] R. Jacobs. Methods for combining experts' probability assessments. Neural
Computation, 7:867-888, 1995.

[6] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and
active learning. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances
in Neural Information Processing Systems 7, pages 231-238, Cambridge, 1995.
MIT Press.

[7] P. Sollich and A. Krogh. Learning with ensembles: How over-fitting can be
useful. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in
Neural Information Processing Systems 8, pages 190-196, San Mateo, 1996.
Morgan Kaufmann.

[8] R. Tibshirani and K. Knight. Model search and inference by bootstrap "bump
ing". Technical report, University of Toronto, 1995.

[9] D. Wolpert and W. Macready. Combining stacking with bagging to improve a
learning algorithm. Technical report, Santa Fe Institute, Santa Fe, 1996.

