
Removing Noise in On-Line Search using
Adaptive Batch Sizes

Genevieve B. Orr
Department of Computer Science

Willamette University
900 State Street

Salem, Oregon 97301
gorr@willamette.ed-u

Abstract

Stochastic (on-line) learning can be faster than batch learning.
However, at late times, the learning rate must be annealed to re
move the noise present in the stochastic weight updates. In this
annealing phase, the convergence rate (in mean square) is at best
proportional to l/T where T is the number of input presentations.
An alternative is to increase the batch size to remove the noise. In
this paper we explore convergence for LMS using 1) small but fixed
batch sizes and 2) an adaptive batch size. We show that the best
adaptive batch schedule is exponential and has a rate of conver
gence which is the same as for annealing, Le., at best proportional
to l/T.

1 Introduction

Stochastic (on-line) learning can speed learning over its batch training particularly
,,,,hen data sets are large and contain redundant information [M0l93J. However, at
late times in learning, noise present in the weight updates prevents complete conver
gence from taking place. To reduce the noise, the learning rate is slowly decreased
(annealed{ at late times. The optimal annealing schedule is asymptotically propor
tional to T where t is the iteration [GoI87, L093, Orr95J. This results in a rate of
convergence (in mean square) that is also proportional to t.
An alternative method of reducing the noise is to simply switch to (noiseless) batch
mode when the noise regime is reached. However, since batch mode can be slow,
a better idea is to slowly increase the batch size starting with 1 (pure stochastic)
and slowly increasing it only "as needed" until it reaches the training set size (pure
batch). In this paper we 1) investigate the convergence behavior of LMS when

Removing Noise in On-Line Search using Adaptive Batch Sizes 233

using small fixed batch sizes, 2) determine the best schedule when using an adaptive
batch size at each iteration, 3) analyze the convergence behavior of the adaptive
batch algorithm, and 4) compare this convergence rate to the alternative method
of annealing the learning rate.

Other authors have approached the problem of redundant data by also proposing
techniques for training on subsets of the data. For example, Pluto [PW93] uses
active data selection to choose a concise subset for training. This subset is slowly
added to over time as needed. Moller [1'10193] proposes combining scaled conjugate
gradient descent (SCG) with \ hat he refers to as blocksize updating. His algorithm
uses an iterative approach and assumes that the block size does not vary rapidly
during training. In this paper, we take the simpler approach of just choosing ex
emplars at mndom at each iteration. Given this, we then analyze in detail the
convergence behavior. Our results are more of theoretical than practical interest
since the equations we derive are complex functions of quantities such as the Hessian
that are impractical to compute.

2 Fixed Batch Size

In this section we examine the convergence behavior for LMS using a fixed batch
siL~e. vVe assume that we are given a large but finite sized training set T == {Zj ==
(Xi, dd }~1 where Xi E nm is the ith input and dj En is the corresponding target.
\Ve further assume that the targets are generated using a signal plus noise model
so that we can write

dj = w; Xj + fj (1)

where w. E nm is the optimal weight vector and the €j is zero mean noise. Since
the training set is assumed to be large we take the average of fj and Xj€j over the
training set to be approximately zero. Note that we consider only the problem of
optimization of the w over the training set and do not address the issue of obtaining
good generalization over the distribution from which the training set was drawn.

At each iteration, we assume that exactly n samples are randomly drawn without
Teplacement from T where 1 S n S N. vVe denote this batch of size n drawn at
time t by Bn(t) == {ZkJ~l' When n = 1 we have pure on-line training and when
/I = lV we have pure batch. \Ve choose to sample without replacement so that as
the batch size is increased, we have a smooth transition from on-line to batch.

FoI' L1'1S, the squared error at iteration t /OT' a batch of size n is

(2)

and where Wt E nm is the current weight in the network. The update weight
equation is then Wt+l = Wt - /.L &~B" where /.L is the fixed learning rate. Rewriting

UWt

this in terms of the weight error v == W - w. and defining gBn,t == 8£Bn(t)/8vt we
obtain

(3)

Convergence (in mean square) to (,v'. can be characterized by the rate of change of
the average squared norm of the weight error E[v2] where v 2 == vT v. From (3) we
obtain an expression for V;+l in terms of Vt,

, ,2 v2 2 ,Tg + 2 g2
Vt+1 = t - /.LV t B,,,t /J- Bn,t· (4)

234 G. B. Orr

To compute the expected value of Vi+l conditioned on Vt we can average the right
side of (4) over all possible ways that the batch Bn (t) can be chosen from the N
training examples. In appendix A, we show that

(gB,,,t)B (gi ,t)N (5)
2 N-n 2 (n-1)N 2

(gBn,t)B = n(N -1) (gi,t)N + (N -1)n (gi,t}N (6)

where (.) N denotes average over all examples in the training set, (.) B denotes average
over the possible batches drawn at time t, and gi,t == O£(Zi)/OVt. The averages over
the entire training set are

N N

~ L O£(Zi) = - L fiXi - vT XiXi = RVt
N i=l OVt i=l

= (7)

N

~ L(fiXi - vT XiXj)T (fjXj - vT XjXj) = u;('I'r R) + vT SVt
i=l

= (8)

where R == (xxT)N' S == (xxTxxT)N 1 , u; == (f2) and (Tr R) is the trace of R.
These equations together with (5) and (6) in (4) gives the expected value of Vt+l
conditioned on Vt .

2 T { 2 (N(n - 1) 2 N - n)} 1J2 U ;(Tr R)(N - n)
(Vt+tlVt) = Vt J- 2IJR + IJ (N _ 1)n R + (N _ 1)n S Vt + n(N -1) .

(9)
Note that this reduces to the standard stochastic and batch update equations when
n = 1 and n = N, respectively.

2.0.1 Special Cases: 1-D solution and Spherically Symmetric

In I-dimension we can average over Vt in (9) to give

(Vi+l) = a(vi) + (3

where

2 (N(n - 1) 2 N - n)
a = 1 - 211R + I-l (N _ l)n R + (N _ 1)n S ,

(10)

and where Rand S simplifY to R = (x2)N' S = (x 4) N. This is a difference equation
which can be solved exactly to give

1- at-to

(vi) = a t - tO (v5) + 1- a (3 (12)

where (v5) is the expected squared weight error at the initial time to.

Figure la compares equation (12) with simulations of 1-D LMS with gaussian inputs
for N = 1000 and batch sizes n = 10, 100, and 500. As can be seen, the agreement is
good. Note that (v 2) decreases exponentially until flattening out. The equilibrium
value can be computed from (12) by setting t = 00 (assuming lal < 1) to give

(2) (3 WT;R(N - n) (13)
v 00 = 1- (~ = 2Rn(N - 1) -1J(N(n - 1)R2 + (N - n)S)·

Note that (v 2)00 decreases as n increases and is zero only if n = N.

1 For real zero mean gaussian inputs, we can apply the gaussian moment factoring
theorem [Hay91] which states that (XiXjXkXI}N = RijRkl + RikRjl + RilRjk where the
subscripts on x denote components of x. From this, we find that S = (Trace R)R+ 2R2.

Removing Noise in On-Line Search using Adaptive Batch Sizes

E[v"2]
1

n=10

O.OOl!-----:":"iil'~------

E[v"2)
1

0.1

0.01

235

n=10

n,.l00 0.001 0 't

(a) 0.0001 n,.500 (b) 0

Figure 1: Simulations(solid) vs Theoretical (dashed) predictions of the squared weight
error of 1-D LMS a) as function of the number of t, the batch updates (iterations), and
b) as function of the number of input presentations, T. Training set size is N = 1000 and
batch sizes are n =10, 100, and 500. Inputs were gaussian with R = 1, 0'(= 1 and p. = .1.
Simulations used 10000 networks

Equation (9) can also be solved exactly in multiple dimensions in the rather restric
tive case where we assume that the inputs are spherically symmetric gaussians with
R = a1 where a is a constant, 1 is the identity matrix, and m is the dimension.
The update equation and solution are the same as (10) and (12), respectively, but
where a and {J are now

2 2 (N(n - 1) N - n) p.2 0';ma(N - n)
C\' = 1 - 2p.a + p. a (N _ 1)n + (N _ 1)n (m + 2) , f3 = n(N _ 1) . (14)

3 Adaptive Batch Size

The time it takes to compute the weight update in one iteration is roughly propor
tional to the number of input presentations, i.e the batch size. To make the compar
ison of convergence rates for different batch sizes meaningful, we must compute the
change in squared weight error as a function of the number of input presentations,
T, rather than iteration number t.

For fixed batch size, T = nt. Figure 1b displays our 1-D LMS simulations plotted as
a function of T. As can be seen, training \vith a large batch size is slow but results
in a lower equilibrium value than obtained with a small batch size .. This suggests
that we could obtain the fastest decrease of (v 2) overall by varying the batch size at
each iteration. The batch size to choose for the current (v2) would be the smallest
n that has yet to reach equilibrium, i.e. for which (v 2) > {v 2)oo.

To determine the best batch size, we take the greedy approach by demanding that
at each itemtion the batch size is chosen so as to reduce the weight error at the
next iteration by the greatest amount per input presentation. This is equivalent to
asking what value of n maximizes h == ((v;) - (V~+l))/n? Once we determine n we
then express it as a function of T.

We treat the 1-D case, although the analysis would be similar for the spherically
symmetric case. From (10) we have h = ~ (((~ - 1)(v;) + {J). Differentiating h with
respect to n and solving yields the batch size that decreases the weight error the
most to be

. (2J.1.N((S-R2)(v;)+(1~R))
nt = mm N, (2R(N -1) + J.I.(S _ NR2))(v;) + J.I.(1~R . (15)

We have nt exactly equal to N when the current value of (v;) satisfies

(2) _ J.I.(f~ R
vt < Ie = 2R(N _ 1) - J.I.(R2(N - 2) - S) (nt = N). (16)

236 G. B. Orr

E[v"2J
1

0 .1

0.01

0.001

Adaptive Batch

- theory
- - - Simulation

100.

50.

10.

5

n

Batch Size

1~~?=~~~~~~~~~ (a) 0 10 20 30 40 50 (b) 0 10 20 30 40 50 60 70

Figure 2: 1-D LMS: a) Comparison of the simulated and theoretically predicted (equation
(18)) squared weight error as a function of t with N = 1000, R = 1, u. = 1, p. = .1 , and
10000 networks. b) Corresponding batch sizes used in the simulations.

Thus, after (v;) has decreased to Ie, training will proceed as pure batch. When
(vn > Ie, we have nt < N and we can put (15) into (10) to obtain

(2) _ (2 (NR2 -S)) (2) jJ2u;R
Vt+l - 1- I-'-R + I-'- 2(N _ 1) V t - 2(N -1)' (17)

Solving (17) we get
1 - nt-to

(v;) = ni- tO (v6) + 1- :~1 {31 (18)

where (tl, and (31 are constants

2 u;R
(31 = -j.t 2(N - 1)" (19)

Figure 2a compares equation (18) with 1-D LMS simulations. The adaptive batch
size was chosen by rounding (15) to the nearest integer. Early in training, the
predicted nt is always smaller than 1 but the simulation always rounds up to 1 (can't
have n=O). Figure 2b displa:ys the batch sizes that were used in the simulations. A
logarithmic scale is used to show that the batch size increases exponentially in t.
\Ve next examine the batch size as a function of T.

3.1 Convergence Rate per Input Presentation

\Vhen we use (15) to choose the batch size, the number of input presentations will
vary at each iteration. Thus, T is not simply a mUltiple of t. Instead, we have

t

T(t) = TO + L nj

i=to
(20)

where TO is the number of inputs that have been presented by to. This can be
evaluated when N is very large. In this case, equations (18) and (15) reduce to

t 1 2 2 (-un - (V6) Ct3 -to where n3 == 1 - I-'-R + "21-'- R (21)

21-'-«S- R2)(v;) + u;R) 21-'-(S - R2) 2j.tu;
(2R - I-'-R2) (v;) = 2R - I-'-R2 + (2 _ jJR)(v6)(};~-to' (22)

Putting (22) into (20), and summing gives gives

~ 2j.t(S - R2) ~ 21-'-u; Ct3~t - (};3

T(t) = (2 _ I-'-R)R t + (2 - I-'-R)(V6) 1 - Ct3
(23)

Removing Noise in On-Line Search using Adaptive Batch Sizes

E[v"2J
1f':-----____ ~n-~-1~OO~ ____ __

n=1
\ .

o.~·g~ n:::~~iivE!-'-___ '_" __ _ n=10

(a)
~~---------

L-~5-0~10-0~15~0-2~OO--2~5~0-3~OO~3~50~400~

E[v"2J
1

0.01

annealed
••• 10;-

f····· ..
I

adaptive batch:

0 .001

theory (solid)
simulation (dashed)

(b)
~~~~~~~~~~~~.~ 

10. 20. 50. 100. 200. 500. 10002000. 

237 

Figure 3: I-D LMS: a) Simulations of the squared weight error as a function of T , the 
number of input presentations for N = 1000, R = 1, u. = 1, 11 = .1, and 10000 networks. 
Batch sizes are n =1, 10, 100, and nt (see (15)). b) Comparison of simulation (dashed) 
and theory (see (24)) using adaptive batch size. Simulation (long dash) using an annealed 
learning rate with n = 1 and 11 = R- 1 is also shown. 

where D.t == t - to and D.T == T - TO. Assuming that la31 < 1, the term with a;-At 
will dominate at late times. Dropping the other terms and solving for a~ gives 

40-2 

(v~) = (vi)a~t ~ (2 -pR)2 R(T _ TO)' (24) 

Thus, when using an adaptive batch size, (v 2 ) converges at late times as ~. Figure 
3a compares simulations of (v 2 ) with adaptive and constant batch sizes. As can 
be seen, the adaptive n curve follows the n = 1 curve until just before the n = 1 
curve starts to flatten out. Figure 3b compares (24) with the simulation. Curves 
are plotted on a log-log plot to illustrate the l/T relationship at late times (straight 
line with slope of -1). 

4 Learning Rate Annealing vs Increasing Batch Size 

\Vith online learning (n = 1), we can reduce the noise at late times by annealing 
the learning rate using a p/t schedule. During this phase, (v 2 ) decreases at a rate of 
l/T if J.1 > R-l /2 [L093] and slower otherwise. In this paper, we have presented an 
alternative method for reducing the noise by increasing the batch size exponentially 
in t. Here, (v2 ) also decreases at rate of l/T so that, from this perspective, an 
adaptive batch size is equivalent to annealing the learning rate. This is confirmed 
in Figure 3b which compares using an adaptive batch size with annealing. 

An advantage of the adaptive batch size comes when n reaches N. At this point n 
remains constant so that (v 2 ) decreases exponentially in T. However, with annealing, 
the convergence rate of (v 2 ) always remains proportional to l/T. A disadvantage, 
though, occurs in multiple dimensions with nonspherical R where the best choice of 
Ht would likely be different along different directions in the weight space. Though 
it is possible to have a different learning rate along different directions, it is not 
possible to have different batch sizes. 

5 Appendix A 

In this appendix we use simple counting arguments to derive the two results in 
equations (5) and (6). We first note that there are M == ( ~ ) ways of choosing n 

examples out of a total of N examples. Thus, (5) can be rewritten as 

1 M 1 M 1 
(gB".t)B= MLgB~i),t= ML;; L gj,t. (25) 

i=l i=l ZjEB~i) 



238 G. B. Orr 

where B~i) is the ith batch (i = 1, ... ,M), and gj,t == a£(Zj )jaVt for j = 1, ... ,N. 
If we were to expand (25) we would find that there are exactly nlvl terms. From 
symmetry and since there are only N unique gj,t, we conclude that each gj,t occurs 
exactly n;: times. The above expression can then be written as 

(26) 

Thus, we have equation (5). The second equation (6) is 

By the same argument to derive (5), the first term on the right (ljn)(gr,t)N' In the 
second term, there are a total n(n -1)M terms in the sum, of which only N(N -1) 
are unique. Thus, a given gJ.tgk,t occurs exactly n(n - I)Mj(N(N - 1)) times so 
that 

1 ~" 1 n(n-l)M ~ 
n2M ~ ~ gj,t gk,t = n2M N(N _ 1) . ~. gj,t gk,t 

.=1 Zj ,z"EB~') ,j~k J,k=l,J~k 

N(n - 1) (1 ( N N 2) 1 (1 N 2)) 
n(N - 1) N2' . L. gj,tgk,t + ~gj,t - N N ~gj,t 

J,k=l,J~k J=l J=l 
= 

= 
N(n - 1) 2 (n - 1) 2 

n(N - 1) (gi,t)N - n(N -1) (9i,t)N. (28) 

Putting the simplified first term together and (28) both into (27) we obtain our 
second result in equation (6). 

References 

[Go187] Larry Goldstein. Mean square optimality in the continuous time Robbins Monro 
procedure. Technical Report DRB-306, Dept. of Mathematics, University of 
Southern California, LA, 1987. 

[Hay91] Simon Haykin. Adaptive Filter Theory. Prentice Hall , New Jersey, 1991. 

[L093] Todd K. Leen and Genevieve B. Orr. Momentum and optimal stochastic search. 
In Advances in Neural Information Processing Systems, vol. 6, 1993. to appear. 

[M!2I193] Martin M!2Iller . Supervised learning on large redundant training sets. International 
Journal of Neural Systems, 4{1} :15-25, 1993. 

[Orr95] Genevieve B. Orr. Dynamics and Algorithms for Stochastic learning. PhD thesis, 
Oregon Graduate Institute, 1995. 

[PW93] Mark Plutowski and Halbert White. Selecting concise training sets from clean 
data. IEEE Transactions on Neural Networks, 4:305-318, 1993. 


