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Abstract 

We study the number of hidden layers required by a multilayer neu
ral network with threshold units to compute a function f from n d 

to {O, I}. In dimension d = 2, Gibson characterized the functions 
computable with just one hidden layer, under the assumption that 
there is no "multiple intersection point" and that f is only defined 
on a compact set . We consider the restriction of f to the neighbor
hood of a multiple intersection point or of infinity, and give neces
sary and sufficient conditions for it to be locally computable with 
one hidden layer . We show that adding these conditions to Gib
son's assumptions is not sufficient to ensure global computability 
with one hidden layer, by exhibiting a new non-local configuration, 
the "critical cycle", which implies that f is not computable with 
one hidden layer. 

1 INTRODUCTION 

The number of hidden layers is a crucial parameter for the architecture of multilayer 
neural networks. Early research, in the 60's, addressed the problem of exactly real
izing Boolean functions with binary networks or binary multilayer networks . On the 
one hand, more recent work focused on approximately realizing real functions with 
multilayer neural networks with one hidden layer [6, 7, 11] or with two hidden units 
[2]. On the other hand , some authors [1, 12] were interested in finding bounds on 
the architecture of multilayer networks for exact realization of a finite set of points. 
Another approach is to search the minimal architecture of multilayer networks for 
exactly realizing real functions, from nd to {O, I}. Our work , of the latter kind, is a 
continuation of the effort of [4, 5, 8, 9] towards characterizing the real dichotomies 
which can be exactly realized with a single hidden layer neural network composed 
of threshold units. 
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1.1 NOTATIONS AND BACKGROUND 

A finite set of hyperplanes {Hd1<i<h defines a partition of the d-dimensional space 
into convex polyhedral open regIons, the union of the Hi'S being neglected as a 
subset of measure zero. A polyhedral dichotomy is a function I : R d --t {O, I}, 
obtained by associating a class, equal to 0 or to 1, to each of those regions. Thus both 
1-1 (0) and 1-1 (1) are unions of a finite number of convex polyhedral open regions. 
The h hyperplanes which define the regions are called the essential hyperplanes of 
I. A point P is an essential point if it is the intersection of some set of essential 
hyperplanes . 

In this paper, all multilayer networks are supposed to be feedforward neural net
works of threshold units, fully interconnected from one layer to the next, without 
skipping interconnections. A network is said to realize a function I: Rd --t to, 1} if, 
for an input vector x, the network output is equal to I(x), almost everywhere in Rd. 
The functions realized by our multilayer networks are the polyhedral dichotomies. 

By definition of threshold units, each unit of the first hidden layer computes a binary 
function Yj of the real inputs (Xl, . .. ,Xd). Therefore, subsequent layers compute 
a Boolean function. Since any Boolean function can be written in DNF -form, two 
hidden layers are sufficient for a multilayer network to realize any polyhedral di
chotomy. Two hidden layers are sometimes also necessary, e.g. for realizing the 
"four-quadrant" dichotomy which generalizes the XOR function [4]. 

For all j, the /h unit of the first hidden layer can be seen as separating the space 
by the hyperplane Hj : 2::=1 WijXi = OJ. Hence the first hidden layer necessarily 
contains at least one hidden unit for each essential hyperplane of I. Thus each 
region R can be labelled by a binary number Y = (Y1 , ... ,Yh) (see [5]). The /h 
digit Yj will be denoted by Hj(R). 

Usually there are fewer than 2h regions and not all possible labels actually exist. 
The Boolean family BJ of a polyhedral dichotomy I is defined to be the set of all 
Boolean functions on h variables which are equal to I on all the existing labels. 

1.2 PREVIOUS RESULTS 

It is straightforward that all polyhedral dichotomies which have at least one linearly 
separable function in their Boolean family can be realized by a one-hidden-Iayer 
network. However the converse is far from true. A counter-example was produced 
in [5]: adding extra hyperplanes (i.e. extra units on the first hidden layer) can 
eliminate the need for a second hidden layer. Hence the problem of finding a minimal 
architecture for realizing dichotomies cannot be reduced to the neural computation 
of Boolean functions . Finding a generic description of all the polyhedral dichotomies 
which can be realized exactly by a one-hidden-Iayer network is still an open problem. 
This paper is a new step towards its resolution. 

One approach consists of finding geometric configurations which imply that a func
tion is not realizable with a single hidden layer. There are three known such geomet
ric configurations: the XOR-situation, the XOR-bow-tie and the XOR-at-infinity 
(see Figure 1) . 

A polyhedral dichotomy is said to be in an XOR-situation iff one of its essential 
hyperplanes H is inconsistent, i.e. if there are four regions B, B', W, W' such that 
Band B' are in class 1, W and W' are in class 0, Band W' are on one side of H, 
B' and Ware on the other side of H, and Band Ware adjacent along H, as well 
as B' and W'. 
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Given a point P, two regions containing P in their closure are called opposite with 
respect to P if they are in different halfspaces w.r.t. all essential hyperplanes going 
through P. A polyhedral dichotomy is said to be in an XOR-bow-tie iff there exist 
four distinct regions B,B', W, W', such that Band B', both in class 1 (resp. W 
and W', both in class 0), are opposite with respect to point P. 

The third configuration is the XOR-at-infinity, which is analogous to the XOR-bow
tie at a point 00 added to n d. There exist four distinct unbounded regions B, B' 
(in class 1), W, W' (in class 0) such that, for every essential hyperplane H, either 
all of them are on the same side of H (e.g. the horizontal line), or Band B' are on 
opposite sides of H, and Wand W' are on opposite sides of H (see [3]) . 

B B' 

Figure 1: Geometrical representation of XOR-situation, XOR-bow-tie and XOR-at
infinity in the plane (black regions are in class 1, grey regions are in class 0). 

Theorem 1 If a polyhedral dichotomy I, from nd to {O, I}, can be realized by a 
one-hidden-layer network, then it cannot be in an XOR-situation, nor in an XOR
bow-tie, nor in an XOR-at-infinity. 

The proof can be found in [5] for the XOR-situation, in [13] for the XOR-bow-tie, 
and in [5] for the XOR-at-infinity. 

Another research direction, implying a function is realizable by a single hidden 
layer network, is based on the universal approximator property of one-hidden-Iayer 
networks, applied to intermediate functions obtained constructively adding extra 
hyperplanes to the essential hyperplanes of f. This direction was explored by Gibson 
[9], but there are virtually no results known beyond two dimensions. Gibson's result 
can be reformulated as follows: 

Theorem 2 II a polyhedral dichotomy I is defined on a compact subset of n 2 , if I 
is not in an XOR-situation, and if no three essential hyperplanes (lines) intersect, 
then f is realizable with a single hidden layer network. 

Unfortunately Gibson's proof is not constructive, and extending it to remove some 
of the assumptions or to go to higher dimensions seems challenging. Both XOR
bow-tie and XOR-at-infinity are excluded by his assumptions of compactness and 
no multiple intersections. In the next section, we explore the two cases which are 
excluded by Gibson's assumptions. We prove that, in n2 , the XOR-bow-tie and 
the XOR-at-infinity are the only restrictions to local realizability. 

2 LOCAL REALIZATION IN 1(,2 

2.1 MULTIPLE INTERSECTION 

Theorem 3 Let I be a polyhedral dichotomy on n2 and let P be a point of multiple 
intersection. Let Cp be a neighborhood of P which does not intersect any essential 
hyperplane other than those going through P . The restriction of I to Cp is realizable 
by a one-hidden-layer network iff I is not in an XOR-bow-tie at P. 



Multilayer Neural Networks: One or 1Wo Hidden Layers? 151 

The proof is in three steps: first, we reorder the hyperplanes in the neighborhood 
of P, so as to get a nice looking system of inequalities; second, we apply Farkas' 
lemma; third, we show how an XOR-bow-tie can be deduced. 

Proof: Let P be the intersection of k 2': 3 essential hyperplanes of f. All the 
hyperplanes which intersect at P can be renumbered and re-oriented so that the 
intersecting hyperplanes are totally ordered. Thus the label of the regions which 
have the point P in their closure is very regular. If one drops all the digits corre
sponding to the essential hyperplanes of f which do not contain P, the remaining 
part of the region labels are exactly like those of Figure 2. 

fl 0 0 -fl 

f2 f2 0 0 -f2 

fA:-l 0 

H, A= 
fA: fA: fA: -fA: 

0 fA:+! fA:+! -fA:+l 

0 
H. 

0 fk+2 -fA:+2 

H7 f2A:-l -f21:-1 

0 0 -f2" 

H5 

Figure 2: Labels of the regions in the neighborhood of P, and matrix A. 

The problem of finding a one-hidden-Iayer network which realizes f can be rewritten 
as a system of inequalities. The unknown variables are the weights Wi and threshold 
() of the output unit. Let (S) denote the subsystem of inequalities obtained from 
the 2k regions which have the point P in their closure. The regular numbering of 
these 2k regions allows us to write the system as follows I l<i<k 

[ 2:~=1 Wm < () if class 0 

(S) 2:~=1 Wm > () if class 1 

[ I:r=H+1 Wm < () if class 0 
k + 1 ~ i ~ 2k 

2:m=i-k+l Wm > () if class 1 

The system (S) can be rewritten in the matrix form Ax ~ b, where 

x T = [Wl,W2, ... ,Wk,()] and bT = [b 1,b2, ... ,bk,bk+1, ... ,b2k] 

where bi = -f, for all i, and f is an arbitrary small positive number. Matrix A can 
be seen in figure 2, where fj = +1 or -1 depending on whether region j is in class 0 
or 1. The next step is to apply Farkas lemma, or an equivalent version [10], which 
gives a necessary and sufficient condition for finding a solution of Ax ~ b. 

Lemma 1 (Farkas lemma) There exists a vector x E nn such that Ax ~ b iff 
there does not exist a vector Y E nm such that y T A = 0, y 2': 0 and y T b < O. 

Assume that Ax ~ b is not solvable. Then, by Lemma 1 for n = k + 1 and m = 2k, 
a vector y can be found such that y 2': O. Since in addition y T b = -f 2:~~1 Yj, the 
condition y T b < 0 implies (3jt) Y31 > O. But y T A = 0 is equivalent to the system 
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(t:) of k + 1 equations 

(t:) { ~::; i ::; k 
z=k+1 

"i+k-l 
i..Jm=i Ym/clau 0 
,,2k 
i..Jm=l Ym/clau 0 

"i+k-l 
i..Jm=i Ym/clau 1 
,,2k 
L..m=l Ym/clau 1 

Since (3jt) Yil > 0, the last equation (Ek+l) of system (t:) implies that 
(3h / class (region jt) ::/= class(region h)) Yh > O. Without loss of generality, 
assume that it and h are less than k and that region it is in class 0 and region h 
is in class 1. Comparing two successive equations of (t:), for i < k, we can write 

(VA E {O, 1}) L(E.+d Ym/clau >. = L(E.) Ym/clau >. - Yi/clau >. + Yi+k/clau >. 

Since Yit > 0 and region it is in class 0, the transition from Ejl to EiI+1 implies 
that Yil +k = Yit > 0 and region it + k, which is opposite to region it, is also 
in class O. Similarly, the transition from Eh to Eh +1 implies that both opposite 
regions h + k and h are in class 1. These conditions are necessary for the system 
(t:) to have a non-negative solution and they correspond exactly to the definition 
of an XOR-bow-tie at point P. The converse comes from theorem 1. • 

2.2 UNBOUNDED REGIONS 

If no two essential hyperplanes are parallel , the case of unbounded regions is exactly 
the same as a multiple intersection. All the unbounded regions can be labelled as 
on figure 2. The same argument holds for proving that, if the local system (S) 
Ax ::; b is not solvable, then there exists an XOR-at-infinity. The case of parallel 
hyperplanes is more intricate because matrix A is more complex. The proof requires 
a heavy case-by-case analysis and cannot be given in full in this paper (see [3]) . 

Theorem 4 Let f be a polyhedral dichotomy on 'R,2 . Let Coo be the complementary 
region of the convex hull of the essential points of f· The restriction of f to Coo is 
realizable by a one-hidden-layer network iff f is not in an XOR-at-in/inity. 

From theorems 3 and 4 we can deduce that a polyhedral dichotomy is locally real
izable in 'R,2 by a one-hidden-Iayer network iff f has no XOR-bow-tie and no XOR
at-infinity. Unfortunately this result cannot be extended to the global realization 
of f in 'R, 2 because more intricate distant configurations can involve contradictions 
in the complete system of inequalities. The object of the next section is to point 
out such a situation by producing a new geometric configuration, called a critical 
cycle, which implies that f cannot be realized with one hidden layer. 

3 CRITICAL CYCLES 

In contrast to section 2, the results of this section hold for any dimension d 2:: 2. 

We first need some definitions. Consider a pair of regions {T, T'} in the same class 
and which both contain an essential point P in their closure. This pair is called 
critical with respect to P and H if there is an essential hyperplane H going through 
P such that T' is adjacent along H to the region opposite to T . Note that T and 
T' are both on the same side of H. 

We define a graph G whose nodes correspond to the critical pairs of regions of f. 
There is a red edge between {T, T'} and {U, U'} if the pairs, in different classes, 
are both critical with respect to the same point (e.g., {Bp, Bp} and {Wp, Wi>} in 
figure 3) . There is a green edge between {T, T'} and {U, U'} if the pairs are both 
critical with respect to the same hyperplane H, and either the two pairs are on the 
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same side of H, but in different classes (e.g., {W p, Wp} and {BQ, BQ})' or they 
are on different sides of H, but in the same class (e.g., {Bp,Bp} and {BR, Bk})· 

Definition 1 A critical cycle is a cycle in graph G, with alternating colors. 

-i B B' }--.. -.-- ----- {Y Y'} 
f P. P .... ; P, P 
I ~ 
I ; 

I {B Q, B'Q~- ·-·-{Y Q ,Y'Q}', 
I I 
I I 

" { B R, B'R}l---{Y R ,Y'R}" 

red edge 
green edge 

Figure 3: Geometrical configuration and graph of a critical cycle, in the plane. Note 
that one can augment the figure in such a way that there is no XOR-situation, no 
XOR-bow-tie, and no XOR-at-infinity. 

Theorem 5 If a polyhedral dichotomy I, from n-d to {O, I}, can be realized by a 
one-hidden-layer network, then it cannot have a critical cycle. 

Proof: For the sake of simplicity, we will restrict ourselves to doing the proof for a 
case similar to the example figure 3, with notation as given in that figure, but with
out any restriction on the dimension d of I. Assume, for a contradiction, that I has 
a critical cycle and can be realized by a one-hidden-Iayer network. Consider the sets 
of regions {Bp, Bp , BQ , BQ, BR, Bk} and {Wp, Wp, WQ , WQ, WR , WR}. Consider 
the regions defined by all the hyperplanes associated to the hidden layer units (in 
general, these hyperplanes are a large superset of the essential hyperplanes). There 
is a region b p ~ B p, whose border contains P and a (d - 1 )-dimensional subset 
of H 1. Similarly we can define bp, .. . , bR, Wp , . . . ,wR' Let B be the set of such 
regions which are in class 1 and W be the set of such regions in class 0. 

Let H be the hyperplane associated to one of the hidden units. For T a region, let 
H(T) be the digit label of T w.r.t. H, i.e. H(T) = 1 or ° according to whether T 
is above or below H (cf. section 1.1) . We do a case-by-case analysis . 

If H does not go through P, then H(bp) = H(b'p) = H(wp) = H(wp); similar 
equalities hold for lines not going through Q or R. If H goes through P but is 
not equal to H1 or to H2 , then, from the viewpoint of H, things are as if b'p was 
opposite to bp, and w'p was opposite to Wp, so the two regions of each pair are on 
different sides of H, and so H (bp )+H(b'p) = H( wp )+H(w'p) = 1; similar equalities 
hold for hyperplanes going through Q or R. If H = H 1, then we use the fact that 
there is a green edge between {W p, Wp} and {BQ, BQ}, meaning in the case of 
the figure that all four regions are on the same side of H 1 but in different classes. 
Then H(bp) +H(b'p) +H(bQ) +H(b'q) = H(wp) +H(wp)+ H(wQ) +H(w'q). In 
fact, this equality would also hold in the other case, as can easily be checked. Thus 
for all H, we have L,bEB H(b) = L,wEW H(w). But such an equality is impossible: 
since each b is in class 1 and each w is in class 0, this implies a contradiction in the 
system of inequalities and I cannot be realized by a one-hidden-Iayer network. 

Obviously there can exist cycles of length longer than 3, but the extension of the 
proof is straightforward. _ 
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4 CONCLUSION AND PERSPECTIVES 

This paper makes partial progress towards characterizing functions which can be re
alized by a one-hidden-Iayer network, with a particular focus on dimension 2. Higher 
dimensions are more challenging, and it is difficult to even propose a conjecture: 
new cases of inconsistency emerge in subspaces of intermediate dimension. Gibson 
gives an example of an inconsistent line (dimension 1) resulting of its intersection 
with two hyperplanes (dimension 2) which are not inconsistent in n3. 
The principle of using Farkas lemma for proving local realizability still holds but 
the matrix A becomes more and more complex. In nd , even for d = 3, the labelling 
of the regions, for instance around a point P of multiple intersection, can become 
very complex. 

In conclusion, it seems that neither the topological method of Gibson, nor our 
algebraic point of view, can easily be extended to higher dimensions. Nevertheless, 
we conjecture that in dimension 2, a function can be realized by a one-hidden
layer network iff it does not have any of the four forbidden types of configurations: 
XOR-situation, XOR-bow-tie, XOR-at-infinity, and critical cycle. 
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