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Abstract 

We study generalization capability of the mixture of experts learn­
ing from examples generated by another network with the same 
architecture. When the number of examples is smaller than a crit­
ical value, the network shows a symmetric phase where the role 
of the experts is not specialized. Upon crossing the critical point, 
the system undergoes a continuous phase transition to a symme­
try breaking phase where the gating network partitions the input 
space effectively and each expert is assigned to an appropriate sub­
space. We also find that the mixture of experts with multiple level 
of hierarchy shows multiple phase transitions. 

1 Introduction 

Recently there has been considerable interest among neural network community in 
techniques that integrate the collective predictions of a set of networks[l, 2, 3, 4]. 
The mixture of experts [1, 2] is a well known example which implements the phi­
losophy of divide-and-conquer elegantly. Whereas this model are gaining more 
popularity in various applications, there have been little efforts to evaluate gener­
alization capability of these modular approaches theoretically. Here we present the 
first analytic study of generalization in the mixture of experts from the statistical 
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physics perspective. Use of statistical mechanics formulation have been focused 
on the study of feedforward neural network architectures close to the multilayer 
perceptron[5, 6], together with the VC theory[8]. We expect that the statistical 
mechanics approach can also be effectively used to evaluate more advanced archi­
tectures including mixture models. 

In this letter we study generalization in the mixture of experts[l] and its variety 
with two-level hierarchy[2]. The network is trained by examples given by a teacher 
network with the same architecture. We find an interesting phase transition driven 
by symmetry breaking among the experts. This phase transition is closely related 
to the 'division-and-conquer' mechanism which this mixture model was originally 
designed to accomplish. 

2 Statistical Mechanics Formulation for the Mixture of 
Experts 

The mixture of experts[2] is a tree consisted of expert networks and gating networks 
which assign weights to the outputs of the experts . The expert networks sit at the 
leaves of the tree and the gating networks sit at its branching points of the tree. 
For the sake of simplicity, we consider a network with one gating network and two 
experts . Each expert produces its output J,lj as a generalized linear function of the 
N dimensional input x : 

J,lj = /(Wj . x), j = 1,2, (1) 

where Wj is a weight vector of the j th expert with spherical constraint[5]. We 
consider a transfer function /(x) = sgn(x) which produces binary outputs . The 
principle of divide-and-conquer is implemented by assigning each expert to a sub­
space of the input space with different local rules. A gating network makes partitions 
in the input space and assigns each expert a weighting factor : 

(2) 

where the gating function 8(x) is the Heaviside step function. For two experts, 
this gating function defines a sharp boundary between the two subspace which is 
perpendicular to the vector V 1 = -V 2 = V, whereas the softmax function used in 
the original literature [2] yield a soft boundary. Now the weighted output from the 
mixture of expert is written: 

2 

J,l(V, W; x) = 2: 9j (x)J,lj (x). (3) 
j=1 

The whole network as well as the individual experts generates binary outputs. 
Therefore, it can learn only dichotomy rules. The training examples are generated 
by a teacher with the same architecture as: 

2 

O'(xlJ) = 2: 8(VJ . x)sgn(WJ . x) , (4) 
j=1 
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where ~o and Wl are the weights of the jth gating network and the expert of the 
teacher. 

The learning of the mixture of experts is usually interpreted probabilistically, hence 
the learning algorithm is considered as a maximum likelihood estimation. Learning 
algorithms originated from statistical methods such as the EM algorithm are often 
used. Here we consider Gibbs algorithm with noise level T (= 1/(3) that leads to a 
Gibbs distribution of the weights after a long time: 

(5) 

where Z = J dV dW exp( -(3E(V, Wj)) is the partition function. Training both the 
experts and the gating network is necessary for a good generalization performance. 
The energy E of the system is defined as a sum of errors over P examples: 

p 

L f(V, W j; xl), (6) 
1=1 

(7) 

The performance of the network is measured by the generalization function 
f(V, W j ) = J dx f(V, Wj; x), where J dx represents an average over the whole 
input space . The generalization error fg is defined by fg = (((f(W))T)) where ((-.-)) 
denotes the quenched average over the examples and (- . -)T denotes the thermal 
average over the probability distribution of Eq. (5). 

Since the replica calculation turns out to be intractable, we use the annealed ap­
proximation: 

((log Z)) ~ log((Z)) . (8) 

The annealed approximation is exact only in the high temperature limit, but it is 
known that the approximation usually gives qualitatively good results for the case 
of learning realizable rules[5, 6] . 

3 Generalization Curve and the Phase Transition 

The generalization function f(V, W j) is can be written as a function of overlaps 
between the weight vectors of the teacher and the student: 

2 2 

LLPijfij (9) 
i=l j=l 

where 

(10) 

(11) 
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and 

Rij 
1 0 

(12) -V··V · N' J' 

Rij 
1 0 
N Wi ·Wj . (13) 

is the overlap order parameters. Here, Pij is a probability that the i th expert of 
the student learns from examples generated by the j th expert of the teacher . It 
is a volume fraction in the input space where Vi . x and VJ . x are both positive. 
For that particular examples, the ith expert of the student gives wrong answer with 
probability fij with respect to the j th expert of the teacher. We assume that 
the weight vectors of the teacher, V 0, W~ and W~, are orthogonal to each other, 
then the overlap order parameters other than the oneS shown above vanish. We 
use the symmetry properties of the network such as Rv = RYI = R~2 = - RY2, 
R = Rll = R22 , and r = R12 = R 21 . 

The free energy also can be written as a function of three order parameters Rv, R, 
and r . Now we consider a thermodynamic limit where the dimension of the input 
space N and the number of examples P goes to infinity, keeping the ratio eY = PIN 
finite. By minimizing the free energy with respect to the order parameters, we find 
the most probable values ofthe order parameters as well as the generalization error. 

Fig 1.(a) plots the overlap order parameters Rv, Rand r versus eY at temperature 
T = 5. Examining the plot, we find an interesting phase transition driven by 
symmetry breaking among the experts. Below the phase transition point eYe = 51.5, 
the overlap between the gating networks of the teacher and the student is zero 
(Rv = 0) and the overlaps between the experts are symmetric (R = r). In the 
symmetric phase, the gating network does not have enough examples to learn proper 
partitioning, so its performance is not much better than a random partitioning. 
Consequently each expert of the student can not specialize for the subspaces with 
a particular local rule given by an expert of the teacher. Each expert has to learn 
multiple linear rules with linear structure, which leads to a poor generalization 
performance. Unless more than a critical amount of examples is provided, the 
divide-and-conquer strategy does not work. 

Upon crossing the critical point eYe, the system undergoes a continuous phase tran­
sition to the symmetry breaking phase. The order parameter Rv , related to the 
goodness of partition, begins to increase abruptly and approaches 1 with increasing 
eY . The gating network now provides a better partition which is close to that of the 
teacher. The plot of order parameter Rand r, which is overlap between experts of 
teacher and student , branches at eYe and approaches 1 and 0 respectively. It means 
that each expert specializes its role by making appropriate pair with a particular 
expert of the teacher. Fig. l(b) plots the generalization curve (f g versus eY) in the 
same scale. Though the generalization curve is continuous, the slope of the curve 
changes discontinuously at the transition point so that the generalization curve has 
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Figure 1: (a) The overlap order parameters Rv, R, r versus 0' at T = 5. For 
0' < O'c = 51.5, we find Rv = 0 (solid line that follows x axis), and R = r 
(dashed line). At the transition point, Rv begins to increase abruptly, R (dotted 
line) and r (dashed line) branches, which approach 1 and 0 respectively. (b) The 
generalization curve (fg versus 0') for the mixture of experts in the same scale. A 
cusp at the transition point O'c is shown. 
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Figure 2: A typical generalization error curve for HME network with continuous 
weight. T = 5. 

a cusp. The asymptotic behavior of fg at large 0' is given by: 

3 1 
f ::::: f3' 1 - e- 0' 

(14) 

where the 1/0' decay is often observed in learning of other feedforward networks. 

4 The Mixture of Experts with Two-Level Hierarchy 

We also study generalization in the hierarchical mixture of experts [2] . Consider 
a two-level hierarchical mixture of experts consisted of three gating networks and 
four experts. At the top level the tree is divided into two branch, and they are in 
turn divided into two branches at the lower level. The experts sit at the four leaves 
of the tree, and the three gating networks sit at the top and lower-level branching 
points. The network also learns from the training examples drawn from a teacher 
network with the same architecture. 

FIG 2. (b) shows corresponding learning curve which has two cusps related to 
the phase transitions. For 0' < O'ct, the system is in the fully symmetric phase. 
The gating networks do not provide correct partition for the experts at both levels 
of hierarchy and the experts cannot specialize at all. All the overlaps with the 
weights of the teacher experts have the same value. The first phase transition at 
the smaller 0'c1 is related to the symmetry breaking by the top-level gating network. 
For 0'c1 < 0' < O'c2, the top-level gating network partition the input space into two 
parts, but the lower-level gating network is not functioning properly. The overlap 
between the gating networks at the lower level of the tree and that of the teacher 
is still zero. The experts partially specialize into two groups . Specialization among 
the same group is not accomplished yet. The overlap order parameter Rij can 
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have two distinct values. The bigger one is the overlap with the two experts of the 
teacher for which the group is specializing, and the smaller is with the experts of 
the teacher which belong to the other group. At the second transition point Q'c2, the 
symmetry related to the lower-level hierarchy breaks. For c¥ > C¥c2, all the gating 
networks work properly and the input space is divided into four. Each expert makes 
appropriate pair with an expert of the teacher. Now the overlap order parameters 
can have three distinct values. The largest is the overlap with matching expert of 
teacher. The next largest is the overlap with the neighboring teacher expert in the 
tree hierarchy. The smallest is with the experts of the other group. The two phase 
transition result in the two cusps of the learning curve. 

5 Conclusion 

Whereas the phase transition of the mixture of experts can be interpreted as a 
symmetry breaking phenomenon which is similar to the one already observed in the 
committee machine and the multi-Iayer-perceptron[6, 7], the transition is novel in 
that it is continuous. This means that symmetry breaking is easier for the mixture 
of experts than in the multi-layer perceptron. This can be a big advantage in 
learning of highly nonlinear rules as we do not have to worry about the existence of 
local minima. We find that the hierarchical mixture of experts can have multiple 
phase transitions which are related to symmetry breaking at different levels. Note 
that symmetry breaking comes first from the higher-level branch, which is desirable 
property of the model. 
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