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Abstract 

Optimal Brain Damage (OBD) is a method for reducing the num
ber of weights in a neural network. OBD estimates the increase in 
cost function if weights are pruned and is a valid approximation 
if the learning algorithm has converged into a local minimum. On 
the other hand it is often desirable to terminate the learning pro
cess before a local minimum is reached (early stopping). In this 
paper we show that OBD estimates the increase in cost function 
incorrectly if the network is not in a local minimum. We also show 
how OBD can be extended such that it can be used in connec
tion with early stopping. We call this new approach Early Brain 
Damage, EBD. EBD also allows to revive already pruned weights. 
We demonstrate the improvements achieved by EBD using three 
publicly available data sets. 

1 Introduction 

Optimal Brain Damage (OBD) was introduced by Le Cun et al. (1990) as a method 
to significantly reduce the number of weights in a neural network. By reducing the 
number of free parameters, the variance in the prediction of the network is often 
reduced considerably which -in some cases- leads to an improvement in general
ization performance of the neural network. OBD might be considered a realization 
of the principle of Occam's razor which states that the simplest explanation (of the 
training data) should be preferred to more complex explanations (requiring more 
weights). 

If E is the cost function which is minimized during training, OBD calculates the 
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saliency of each parameter Wi defined as 

11)2E 
OBD(wd = A(Wi) = 2 I)w~ wl· 

s 

Weights with a small OBD(wd are candidates for removal. OBD(wd has the 
intuitive meaning of being the increase in cost function if weight Wi is set to zero 
under the assumptions 

• that the cost function is quadratic, 

• that the cost function is "diagonal" which means it can be written as E = 
Bias + 1/2l:i hi(Wi - wi)2 where where {wn~l are the weights in a 
(local) optimum of the cost function (Figure 1) and the hi and BIAS are 
parameters which are dependent on the training data set. 

• and that Wi ~ wi. 

In practice, all three assumptions are often violated but experiments have demon
strated that OBD is a useful method for weight removal. 

In this paper we want to take a closer look at the third assumption, i. e. the assump
tion that weights are close to optimum. The motivation is that theory and practice 
have shown that it is often advantageous to perform early stopping which means 
that training is terminated before convergence. Early stopping can be thought of 
as a form of regularization: since training typically starts with small weights, with 
early stopping weights are biased towards small weights analogously to other reg
ularization methods such as ridge regression and weight decay. According to the 
assumptions in OBD we might be able to apply OBD only in heavily overtrained 
networks where we loose the benefits of early stopping. In this paper we show that 
OBD can be extended such that it can work together with early stopping. We call 
the new criterion Early Brain Damage (EBD). As in OBD, EBD contains a num
ber of simplifying assumptions which are typically invalid in practice. Therefore, 
experimental results have to demonstrate that EBD has benefits. We validate EBD 
using three publicly available data sets. 

2 Theory 

As in OBD we approximate the cost function locally by a quadratic function and 
assume a "diagonal" form. Figure 1 illustrates that OBD(Wi) for Wi = wi calculates 
the increase in cost function if Wi is set to zero. In early stopping where Wi =f. wi, 
o B D( Wi) calculates the quantity denoted as Ai in Figure 1. Consider 

I)E 
Bi = ---Wi' 

I)wi 

The saliency of weights Wi in Early Stopping Pruning 

ESP(wd = Ai + Bi 

is an estimate of how much the cost function increases if the current Wi (i. e. Wi m 
early stopping) is set to zero. Finally, consider 
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Figure 1: The figure shows the cost function E as a function of one weight Wi 

in the network. wi is the optimal weight. Wi is the weight at an early stopping 
point. If OBD is applied at Wi, it estimates the quantity Ai- ESP(Wi) = Ai + 
Bi = E(Wi) - E(Wi = 0) estimate the increase in cost function if Wi is pruned. 
EBD{Wi) = Ai + Bi + Ci = E{wi) - E(Wi = 0) is the difference in cost function 
if we would train to convergence and if we would set Wi = O. In other words 
EBD{wd = OBD(wi). 
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The saliency of weight Wi in EBD is 

EBD(wd = OBD(w;) = Ai + B j + Cj 

which estimates the increase in cost function if Wj is pruned after convergence (i.e. 
EBD(wd = OBD(wt)) but based on local information around the current value 
of Wi. In this sense EBD evaluates the "potential" of Wi. Weights with a small 
EBD(wd are candidates for pruning. 

Note, that all terms required for EBD are easily calculated. With a quadratic cost 
function E = l:f=I(J!' - N N(xk))2 OBD approximates (OBD-approximation) 

82E ~ 2 K (8NN(Xk))2 
8w~ 2: 8w' 

I k=1 I 

where (xk, J!'){f=1 are the training data and N N(xk) is the network response. 

3 Extensions 

3.1 Revival of Weights 

(1) 

In some cases, it is beneficial to revive weights which are already pruned. Note, that 
Ci exactly estimate the decrease in cost function if weight Wi is "revived". Weights 
with a large Ci(Wi = 0) are candidates for revival. 

3.2 Early Brain Surgeon (EBS) 

After OBD or EBD is performed, the network needs to be retrained since the 
"diagonal" approximation is typically violated and there are dependencies between 
weights. Optimal Brain Surgeon (OBS, Hassibi and Storck, 1993) does not use 
the "diagonal" approximation and recalculates the new weights without explicit 
retraining. OBS still assumes a quadratic approximation of the cost function. The 
saliency in OBS is 

W~ 

Li = 2[H~I]ii 
where [H- 1]ii is i-th diagonal element of the inverse of the Hessian. Li estimates the 
increase in cost if the i-th weight is set to zero and all other weights are retrained. 
To recalculate all weights after weight Wi is removed apply 

Wi -1 
Wnew = Wold - [H-l]ii H ei 

where ei is the unit vector in the i-th direction. 

Analogously to OBS, Early Brain Surgeon EBS would first calculate the optimal 
weight vector using a second order approximation of the cost function 

w*=w_H-18E 
8w 

and then apply OBS using w*. We did not pursue this idea any further since our 
initial experiments indicated that W* was not estimated very accurately in praxis. 
Hassibi et al. (1994) achieved good performance with OBS even when weights were 
far from optimal. 



Early Brain Damage 673 

3.3 Approximations to the Hessian and the Gradient 

Finnoff et al. (1993) have introduced the interesting idea that the relevant quantities 
for OBD can be estimated from the statistics of the weight changes. 

Consider the update in pattern by pattern gradient descent learning and a quadratic 
cost function 

aWi = -'1 OEk = 2'1(yk _ N N(xk)) oN N(xk) 
ow OWi 

with Ek = (Yk - N N(Xk))2 where '1 is the learning rate. 

We assume that xk and yk are drawn online from a fixed distribution (which is 
strictly not true since in pattern by pattern learning we draw samples from a fixed 
training data set). Then, using the quadratic and "diagonal" approximation of the 
cost function and assuming that the noise f in the model 

is additive uncorrelated with variance (J'2 1 

(2) 

and 

v AR(aWi) = V AR (2'1(yk - N N(xk)) oN :w:xk)) 

= 4~'V AR ((v" - N N'(zk)) aN:w:xk )) +4~'V AR ((W; _ Wi) (aN :w:zk)) ') 

= 4,Nc (aN:w:zk))' +4~'(w; - wo)'VAR ( eN :w:zk)) ') 
where N N* (xk) is the network output with optimal weights {wi} ~1. Note, that 
in the OBD approximation (Equation 1) 

and 

If we make the further assumption that oN N(xk)j OWi is Gaussian distributed with 
zero mean2 

1 e stands for the expected value. With Wi kept at a fixed value. 
2The zero mean assumption is typically violated but might be enforced by 

renormalization. 
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we obtain 

(3) 

The first term in Equation 3 is a result of the residual error which is translated 
into weight fluctuations. But note, that weights with a small variance with a large 
/)2 E / /)wl fluctuate the most. The first term is only active when there is a residual 
error, i.e. (72 > O. The second term is non-zero independent of (72 and is due to the 
fact that in sample-by-sample learning, weight updates have a random component. 
From Equation 2 and Equation 3 all terms needed in EBD (i. e. /)E//)w, and 
/)2 E / /)wl) are easily estimated. 

4 Experimental Results 

In our experiments we studied the performance of OBD, ESP and EBD in connec
tion with early stopping. Although theory tells us that EBD should provide the best 
estimate of the the increase in cost function by the removal of weight Wi, it is not 
obvious how reliable that estimate is when the assumptions ("diagonal" quadratic 
cost function) are violated. Also we are not really interested in the correct estimate 
of the increase in cost function but in a ranking of the weights. Since the assump
tions which go into OBD, EBD, ESP (and also OBS and EBS) are questionable, the 
usefulness of the new methods have to be demonstrated using practical experiments. 

We used three different data sets: Breast Cancer Data, Diabetes Data, and Boston 
Housing Data. All three data sets can be obtained from the DCI repository 
(ftp:ics.uci.edu/pub/machine-Iearning-databases). The Breast Cancer Data con
tains 699 samples with 9 input variables consisting of cellular characteristics and 
one binary output with 458 benign and 241 malignant cases. The Diabetes Data 
contains 768 samples with 8 input variables and one binary output. The Boston 
Housing Data consist of 506 samples with 13 input variables which potentially in
fluence the housing price (output variable) in a Boston neighborhood (Harrison & 
Rubinfeld, 1978). 

Our procedure is as follows. The data set is divided into training data, validation 
data and test data. A neural network (MLP) is trained until the error on the vali
dation data set starts to increase. At this point OBD, ESP and EBD are employed 
and 50% of all weights are removed. After pruning the networks are retrained until 
again the error on the validation set starts to increase. At this point the results 
are compared. Each experiment was repeated 5-times with different divisions of the 
data into training data, validation data and test data and we report averages over 
those 5 experiments. 

Table 1 sums up the results. The first row shows the number of data in training 
set, validation set and test set. The second row displays the test set error at the 
(first) early stopping point. Rows 3 to 5 show test set performance of OBD, ESP 
and EBD at the stopping point after pruning and retraining (absolute / relative 
to early stopping). In all three experiments, EBD performed best and OBD was 
second best in two experiments (Breast Cancer Data and Diabetes Data) . In two 
experiments (Breast Cancer Data and Boston Housing Data) the performance after 
pruning improved. 
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Table 1: Comparing OBD, ESP, and EBD. 
Breast Cancer Diabetes Boston Housing Data 

Train/V /Test 233/233/233 256/256/256 168/169/169 
Hidden units 10 5 3 
MSE (Stopp) 0.0340 0.1625 0.2283 
OBD 0.0328/ 0.965 0.1652/1.017 0.2275 /0.997 
ESP 0.0331 / 0.973 0.1657 /1.020 0.2178 / 0.954 
EBD 0.0326/ 0.959 0.1647 /1.014 0.2160 / 0.946 

5 Conclusions 

In our experiments, EBD showed better performance than OBD if used in conjunc
tion with early stopping. The improvement in performance is not dramatic which 
indicates that the rankings of the weights in OBD are reasonable as well. 
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