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Abstract

We present a statistical method that exactly learns the class of
constant depth p-perceptron networks with weights taken from
{-1,0 + 1} and arbitrary thresholds when the distribution that
generates the input examples is member of the family of product
distributions. These networks (also known as nonoverlapping per-
ceptron networks or read-once formulas over a weighted threshold
basis) are loop-free neural nets in which each node has only one
outgoing weight. With arbitrary high probability, the learner is
able to exactly identify the connectivity (or skeleton) of the target
p-perceptron network by using a new statistical test which exploits
the strong unimodality property of sums of independent random
variables.

1 INTRODUCTION

From a computational learning theory perspective, it is well known that efficient
learning of non trivial (or non simple) neural network function classes is possible
only when either (1) the learner is able to use membership queries or (2) the distri-
bution thiat generates the input examples is not arbitrary but member of some well
defined family. Following several positive learnability results on different classes of
read-once Boolean formulas, a membership query algorithm has been recently pro-
posed [4] for learning the class of nonoverlapping perceptron networks. These net-
works (also known as p-perceptron networks or read-once formulas over a weighted
threshold basis) are loop-free neural nets in which each node has only one outgoing
weight. If membership queries are not permitted (as we assume throughout this
paper), learning this class becomes intractable [6] under arbitrary input distribu-



Strong Unimodality and Exact Learning of Constant Depth p-Perceptron Networks 289

tions. However, under the uniform distribution, a PAC learning algorithm has been
proposed recently [2] for a quite restricted subclass called generalized p-perceptron
decision lists. As an important step towards the learnability of the whole class of
p-perceptron networks under “simple” distributions, we present in this paper a sta-
tistical method that exactly learns the class of constant depth p-perceptron networks
under the family of product distributions, i.e. distributions in which the setting of
each input variable is chosen independently of the other variables. Eventhough the
depth of the network must be fixed to a constant, we satisfy here a harder learning
criterion than the one proposed by the PAC model [9]. Indeed, with arbitrary high
probability, the proposed algorithm is able to ezactly identify [1] the target function.
Moreover, because of its statistical nature [7], the proposed algorithm can tolerate
a classification noise rate n up to the information theoretic limit of n = 1/2.

There exist other statistical methods to learn other classes of read-once formulas un-
der particular distributions [1] and product distributions [8]. They all basically differ
in the statistical tests they use to identify the gate parameters and the formula’s
skeleton. Our key novel contribution is to introduce a new test (for discovering the
network’s connectivity) which exploits the strong unimodality [5] property of sums
of independent random variables.

2 DEFINITIONS

We consider the problem of learning Boolean functions of the Boolean domain
{0,1}". Let X = {z1,Z2--,Zn} be the set of n input variables and x € {0,1}" be
some assignment of these n variables, we denote by xy the restriction of assignment
x on the variables in V C X. A perceptron g on V is defined by a vector of v = |V/|
weights w; and a single threshold 6. As usual, for any xy € {0,1}", the output of
g(xv) is 1 whenever ) .., w;z; > 6 and 0 otherwise.

We restrict ourselves to the case where each w; € {—1,0,+1} but the thresholds
are arbitrary so that, without loss of generality (w.l.o.g.), # € {—v —1,---v}. A
perceptron is said to be positive if all its incoming weights are +1. The learning
algorithm will use the following classification for positive perceptrons.

T'1 perceptrons: These are perceptrons which output 1 iff one or more of its inputs
are set to 1. These are OR gates of multiple inputs.

TO perceptrons: These are perceptrons which output 0 iff one or more of its inputs
are set to 0. These are AND gates of multiple inputs.

T'11 perceptrons: These are perceptrons which output 1 iff two or more of its inputs
are set to 1. These include majority gates of three inputs.

T00 perceptrons: These are perceptrons which output 0 iff two or more of its inputs
are set to 0. These include majority gates of four variables.

TG perceptrons: All the perceptrons which do not belong to any one of the above
four categories. They must, therefore, have at least five inputs.

Each perceptron can have variables and/or other perceptrons as inputs. Hence,
a node will denote either a variable or a perceptron. The class of u-perceptron
networks is the set of all Boolean functions that can be represented as a loop-
free network of perceptrons where each node (including input units) has only one
outgoing weight. The output unit of a network will often be referred as the root node.
We say that a node is a child of the parent perceptron g if it is an immediate input
to perceptron g. Children of the same perceptron are called siblings. A perceptron
is said to be a bottom level perceptron if all its children are variables. The depth of a
node is defined as the number of perceptrons (including the parent of the node and
the root node) on the path from the parent of the node to the root. The perceptrons
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on this path are called the ancestors of that node. The descendants of perceptron
g, denoted by desc(g), is the set of nodes that have perceptron g as an ancestor.
The depth of a network is defined as the depth of the deepest variable in the net.
The least common ancestor of a set V' of nodes, denoted by lca(V), is defined as
the deepest ancestor which is common to every node in V. Variables {zs,zj, Tk}
are said to meet at perceptron g, iff lca(z;, ;) = lca(x;, z) = lea(zj, k) = g. If
there does not exist a perceptron g having this property, then variables {z;, zj, T}
are said not to meet.

In this paper, we use a learning criterion which is more ambitious than the PAC
criterion introduced by Valiant [9]. We consider that each training example x
is generated by an unknown product distribution D on {0,1}" and then labeled
according to an unknown target Boolean function f representable as a p-perceptron
network. After observing a set of such examples, the goal of the learning algorithm
is to produce an hypothesis function A which is the exact equivalent of f. More
formally we say that algorithm A exactly learns (or exactly identifies) a class F' of
of Boolean functions iff for any 0 < § < 1, any product distribution D on {0,1}",
and any target function f € F, algorithm A outputs, with probability at least 1 — 6
an hypothesis function A such that h(x) = f(x) V x € {0,1}".

The learning algorithm will perform several statistical tests to build its hypothesis.
Namely, for each variable ;, it will estimate its influence, defined as:

Infi(z;) ¥ Pr(f = 1|z; = 1) — Pr(f = 1|z; = 0) (1)
where all probabilities (here and in the sequel) are defined with respect to the
(unknown) training product distribution D. The empirical estimate of Pr(4) will
be denoted as Pr(4). We will also use, Infly(z;) to denote the influence of x; on the
subformula of f which is rooted at perceptron g. Also, Infl(z;|z; = a) will denote
the influence of z; given that variable x; is fixed to value a. To discover the skeleton
of the target function, the learner will compute the coinfluence of several triples of
variables, defined as:

k def Infli(zj|zi = 1,2 = 0) Infl(zsle; =1,z = 1) ()
“3 7 Infi(zj|z; = 0,2k = 0) Infl(z,|z; = 0,z% = 1)

Because h must make zero error with f, the learner must produce an hypothesis
h which contains all the input variables and all the perceptrons of f (except those
variables and perceptrons which are fixed to a constant value). Consequently, for a
target f defined on n input variables x; and containing r perceptrons g, we define
€5 as:

es & min {Pr(z: = a)ic{0,--n},ae{0,13> Pr(gk = D)ke{o,r}pef0,1} } (3)

Hence, V i € {0,---n} we have: ¢, < Pr(z; =1) <1-¢ and V k € {0,---7}
we have: €; < Pr(gx = 1) < 1 —¢€,. To exactly learn the class of constant depth

p-percepton networks, the proposed algorithm needs a number of examples which
is polynomial in 1/e, (see the algorithm LearnNPN).

3 THE LEARNING ALGORITHM

We first perform some simplifying reductions that hold for any target u-perceptron
net f. (1) We can assume, w.lo.g., that only input variables have a negative
outgoing weight. Indeed, if a perceptron g has a —1 outgoing weight, we can
replace it by a perceptron which has all its incoming weights negated and a +1
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outgoing weight; this leaves the computation by f unchanged when we add +1 to
the threshold of g’s parent. In this manner, all —1 weights are pushed to the input
variables. (2) T'1 perceptrons do not have T'1 perceptrons as children since such
nodes can always be merged. The same remark is true for 70 perceptrons. (3)
Because the output of each node is Boolean valued, each perceptron has at least
two inputs. This implies that f has at most n — 1 perceptrons.

The first step of the algorithm is to identify the weight w; that springs out of each
input variable x;. For this we appeal to the following lemma:

Lemma 1 Let f be any p-perceptron network with weights taken from {—1,0,+1}
and arbitrary thresholds. Let D be any product distribution on {0,1}". Let g be any
perceptron with v weights and for which p < Pr(g =1) <1 — p. Let input variable
x; be a child of g. Then:

> +p/(20) if w;=+1
Inﬂg(m,;) { = 0 if w; = 0
< —p/(2v) if w=-1

Moreover, if x; has depth d, then, we have:
€s

Infl(z;)| > (%)d

Thus Infl(z;) has a gap of O([es/n]?) that separates the three possible values for
w;. From Chernoff bounds (3], this implies that a sample size polynomial in €;/n is
sufficient to find, with high probability, the ezact value of w; when d is fixed. After
having identified all the weights in this manner, we transform the target function
into its positive form simply by changing z; to 1 —z; (and adding +1 to the threshold
of z;’s parent) whenever w; = —1.

To find the skeleton of the target function, the algorithm will first find all the bot-
tom level perceptrons (i.e. perceptrons whose children are all variables). Then,
after finding the eract thresholds (for TG perceptrons), we will consider these bot-
tom level perceptrons as new “meta” variables (that replace their children) from
which we can find their parent perceptrons. In this manner similar to Schapire’s
algorithm [8], we will build every perceptron of the net until we reach the root.

The coinfluence function will enable the learner to determine if certain variables
are siblings of a perceptron g and if g is fed by other perceptrons. This is possi-
ble because the distribution of a sum of independent random variables is strongly
unimodal [5]. More specifically, we have (and need) here a stronger property:

Lemma 2 Let {z1,z2---,2,} be v independent random Boolean variables, each
with Pr(z; = 1) = ¢q; and let gdef Z;’:l x;. Then for any {q1-+,q,} and any
ke{l,---,v}:
Pr(S=k—-1) Pr(S=k-2) S Pr(S=0) 1
Pr(S =k) Pr(S=k—-1) — Pr(S=1) v<a>,

where aidgqi/(l —¢q) and < a >, def Sy aifv.
Proof: Omitted from this abstract but one can easily verify its exactness in the
case where ¢; = q foralli=1.--,v. O.

The next lemma constitutes our main tool for finding the connectivity of f. It is
expressed in terms of what we call the strong unimodal gap yy:

41 min ! 1
Tn n<a>, n<l/a>,
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where: < 1/a >, & S o/
Lemma 3 Let {z;,zj,7x} be any triple of variables such that each is a child of
some T'G perceptron. Then:

1. CF; > v if {zi,z;,z1} are siblings of a perceptron g.
2. CF; =0 if zx ¢ desc(lea(z:, 7;))

3. C{fj = C’{fl if {zi,z;, T} meet at a perceptron g that has a perceptron gj as
a child with the property that both x; and xz; feed g;.

4. ¥ { CF; > v, and z; feeds lca(zi, z;) through a perceptron g which is not

fed by (z;,z;) } Then C’LJ- > ~3 . Infl(z;)

Proof sketch: If {z;,z;,zx} are siblings of a perceptron g of threshold 4, then
Cf; = [Pr(S = 8 — 1)/Pr(S = 6)] — [Pr(S = 6 — 2)/Pr(S = 6 — 1)] which, from
lemma 2, establishes fact 1. Let g = lca(x;,z;). Then, if zx ¢ desc(lca(z;, z;)),
Infl(z;|z; = a,zx = b) = Infi(g|zs = b) - Infly(z;|z; = a) which establishes fact 2.
The proofs for fact 3 and 4 are omitted from this abstract. O.

The constraints on z; and zx in lemma 3 are to avoid vanishing denominators
in Cf ;. This does not create any problems since by using simpler tools, we can
always find the children of the 70,7'1, 700, T'11 perceptrons before those of the TG
perceptrons. In the following we also explain how to identify the non-7'G bottom
level perceptrons.

Lemma 4 Variable z; is a child of a T1 perceptron iff there exist x; such that
Infl(z;|x; = 1) = 0. Otherwise Infl(z;|x; = 1) > Infi(z;) - v, for all z; # ;.

Motreover, a set W of variables, each of which is a child of a T'1 perceptron, is a set
of siblings iff Infl(zj|z; =1) =0V {z;,z;} € W.

Moreover, If { W C V is a set of variables, all siblings of a T perceptron g, such
that no children of g is in V—W } Then { g is a bottom level perceptron with respect
to V iff Infl(zk|z; = 1) > Infl(zg) -y, for all zx, € V — W, z, € W. Otherwise there
exist zx € V — W and x; € W such that Infl(zi|z; = 1) =0 }.

The lemma is valid when we replace T'1 by T0 if the condition x; = 1 is replaced by
T; = 0.

Proof idea: Directly follows from lemma 2, the definitions of 7'1 and 70 and from
the fact that no two consecutive 7'1 (nor 70) perceptrons occur in f. O

From this lemma, we define a routine, Find-bl-T'1(V), that finds all T'1 perceptrons
which are bottom level with respect to the set V' of variables (or meta variables). It
achieves this by testing, for each pair of variables, if Infl(z;|z; = 1)/Infl(z;) > 7,/2.
(By using Chernoff bounds, we find the probability of making the correct decision
for each variable as a function of the sample size m.) Moreover, the output of this
routine is a set V'’ which consists of the original set V' from which the siblings have
been replaced by their bottom level T'1 parents (with their children connected) as
new meta variables. It also tags those variables in V' that are children of some non-
bottom level T'1 perceptron. This is to warn the subsequent routines of not using
these variables to find out if they are children of other types of perceptrons. An
identical definition and a similar operation applies for Find-bl-T0O(V). The same
applies also for Find-bl-T11(V), Find-bl-T00(V) and Find-bl-TG(V) but for
them, we need to use the following lemmas.
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Lemma 5 Let z; and x; be variables which neither is a child of a T1 or a T0
perceptron. Then {x;, x;} are siblings of a T11 perceptron iff there exist xj such
that Infl(zi|x; = x; = 1) = 0. Otherwise Infl(zy|z; = z; = 1) > Infl(zy) - ¥2 for all
zr & {zi,x;}.

Moreover, let V be a set of variables for which no one is a child of some TO or T'1
perceptron. Let W C V be a set of variables, all siblings of a T11 perceptron g and

such that no children of g is in V. — W. Then g is a bottom level perceptron with
respect to V iff Cz’fj =0 for all zxy € V — W and {z;,x;} € W. Otherwise there

exist zx € V — W and {z;,z;} € W such that CF; > Infl(zy) - 7.

The lemma is valid when we replace T11 by T00 if the condition x; = z; = 1 is
replaced by z;, = x; = 0.

Proof idea: Follows from lemmas 2 and 3 and from the definitions of 7'11 and 7°00
perceptrons. O

Lemma 6 Let V be a set of variables, each of which is a child of some TG per-
ceptron. Let W C 'V be a set of variables for which CF; > v, V {z;,z;,2¢} € W.
Then W is a set of siblings of a bottom level TG perceptron g (and thus g is bottom
level with respect to V') iff there does not exist any {{,m} € V —W and {i,j} e W
for which all of these properties hold:

1. Ct; >3 - Iofli(xy) and CT% >3 - Infl(zm)

2. Cl,, =¢Cl,. =0
Moreover, the threshold 6 of a bottom level TG perceptron g (in positive form) is
obtained by the value of k for which Pr(f = 1|S = k+1)—Pr(f = 1|S = k) > Infl(z;)
where x; can be any child of g and S denotes the sum over all its children. This

difference is zero if k # 6.

Having sketched the action of the different Find-bl-T* routines, we now propose
the following learning algorithm.

Algorithm LearnNPN(n, ¢, §)

64 \2 /2n\* /32dn3\ .
1. Callm = | — In training examples.

€2v3 €s ]

2. For every z; € X, let w; = +1 if Infl(z;) > €5/4n, let w; = -1 if Iﬁﬂ(mi) <
—€5/4n and let w; = 0 otherwise. Let z; = 1 — z; whenever w; = —1
(conversion into the positive form). Let V = X.

3. Repeat {

Repeat {
Repeat {
Repeat {Let V; = V; V = Find-bl-T1(Find-bl-T0(V;))
} Until V=V,
Let V; = V; V = Find-bl-T00(V;)
}Until V=V,
Let V; = V; V = Find-bl-T11(V})
}Until V=V,

V = Find-bl-TG(V)
} Until only one meta-variable remains in V'
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4. Return this meta-variable (with all the others attached to it) as our hy-
pothesis network h and convert from positive to normal form.

The nested loops insure that, every time the set V' of meta-variables is updated, all
bottom level 70 and T'1 perceptrons are found before the 700 and T'11 perceptrons
which are themselves found before the T'G perceptrons. This is essential in order
that the Find-bl-T* routines make proper use of lemma 5 and 6.

Theorem 1 Under product distributions, the algorithm LearnNPN ezactly learns
the class of p-perceptrons networks of depth at most d with weights taken from
{-1,0,41} and arbitrary thresholds. The algorithm runs in time of O(m x d x n3).

Proof idea: By using Chernoff bounds [3], one can verify that the above sample of
m examples is sufficient to ensure that all probabilities are estimated with enough
precision to have h(x) = f(x) Yx € {0,1}" with probability at least 1 — 6.
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