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Abstract 

A theory of early stopping as applied to linear models is presented. 
The backpropagation learning algorithm is modeled as gradient 
descent in continuous time. Given a training set and a validation 
set, all weight vectors found by early stopping must lie on a cer­
tain quadric surface, usually an ellipsoid. Given a training set and 
a candidate early stopping weight vector, all validation sets have 
least-squares weights lying on a certain plane. This latter fact can 
be exploited to estimate the probability of stopping at any given 
point along the trajectory from the initial weight vector to the least­
squares weights derived from the training set, and to estimate the 
probability that training goes on indefinitely. The prospects for 
extending this theory to nonlinear models are discussed. 

1 INTRODUCTION 

'Early stopping' is the following training procedure: 

Split the available data into a training set and a "validation" set. 
Start with initial weights close to zero. Apply gradient descent 
(backpropagation) on the training data. If the error on the valida­
tion set increases over time, stop training. 

This training method, as applied to neural networks, is of relatively recent origin. 
The earliest references include Morgan and Bourlard [4] and Weigend et al. [7]. 
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Finnoff et al. [2] studied early stopping empirically. While the goal of a theory of 
early stopping is to analyze its application to nonlinear approximators such as sig­
moidal networks, this paper will deal mainly with linear systems and only marginally 
with nonlinear systems. Baldi and Chauvin [1] and Wang et al. [6] have also ana­
lyzed linear systems. 

The main result of this paper can be summarized as follows. It can be shown 
(see Sec. 5) that the most probable stopping point on a given trajectory (fixing 
the training set and initial weights) is the same no matter what the size of the 
validation set. That is, the most probable stopping point (considering all possible 
validation sets) for a finite validation set is the same as for an infinite validation 
set. (If the validation data is unlimited, then the validation error is the same as the 
true generalization error.) However, for finite validation sets there is a dispersion 
of stopping points around the best (most probable and least generalization error) 
stopping point, and this increases the expected generalization error. See Figure 1 
for an illustration of these ideas. 

2 MATHEMATICAL PRELIMINARIES 

In what follows, backpropagation will be modeled as a process in continuous time. 
This corresponds to letting the learning rate approach zero. This continuum model 
simplifies the necessary algebra while preserving the important properties of early 
stopping. Let the inputs be denoted X = (Xij), so that Xij is the j'th component of 
the i'th observation; there are p components of each of the n observations. Likewise, 
let y = (Yi) be the (scalar) outputs observed when the inputs are X. Our regression 
model will be a linear model, Yi = W'Xi + fi, i = 1, ... , n. Here fi represents 
independent, identically distributed (LLd.) Gaussian noise, fi rv N(O, q2). Let 
E(w) = !IIXw - Yll2 be one-half the usual sum of squared errors. 

The error gradient with respect to the weights is \7 E(w) = w'x'x - y'X. The 
backprop algorithm is modeled as Vi = -\7 E( w). The least-squares solution, at 
which \7E(w) = 0, is WLS = (X'X)-lX'y. Note the appearence here of the 
input correlation matrix, X'X = (2:~=1 XkiXkj). The properties of this matrix 
determine, to a large extent, the properties of the least-squares solutions we find. It 
turns out that as the number of observations n increases without bound, the matrix 
q2(X'X)-1 converges with probability one to the population covariance matrix of 
the weights. We will find that the correlation matrix plays an important role in the 
analysis of early stopping. 

We can rewrite the error E using a diagonalization of the correlation matrix X'X = 
SAS'. Omitting a few steps of algebra, 

p 

E(w) = ! L AkV~ + !y'(y - XWLS) (1) 
k=l 

where v = S'(W-WLS) and A = diag(Al, .. . , Ap). In this sum we see that the mag­
nitude of the k'th term is proportional to the corresponding characteristic value, 
so moving w toward w LS in the direction corresponding to the largest character­
istic value yields the greatest reduction of error. Likewise, moving in the direction 
corresponding to the smallest characteristic value gives the least reduction of error. 
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So far, we have implicitly considered only one set of data; we have assumed all data 
is used for training. Now let us distinguish training data, X t and Yt, from validation 
data, Xv and Yv ; there are nt training and nv validation data. Now each set of 
data has its own least-squares weight vector, Wt and Wv , and its own error gradient, 
\lEt(w) and \lEv(w). Also define M t = X~Xt and Mv = X~Xv for convenience. 
The early stopping method can be analyzed in terms of the these pairs of matrices, 
gradients, and least-squares weight vectors. 

3 THE MAGIC ELLIPSOID 

Consider the early stopping criterion, d~v (w) = O. Applying the chain rule, 

dEv = dEv . dw = \lE . -\lE 
dt dw dt v t, 

(2) 

where the last equality follows from the definition of gradient descent. So the early 
stopping criterion is the same as saying 

\lEt' \lEv = 0, (3) 

that is, at an early stopping point, the training and validation error gradients are 
perpendicular, if they are not zero. 

Consider now the set of all points in the weight space such that the training and 
validation error gradients are perpendicular. These are the points at which early 
stopping may stop. It turns out that this set of points has an easily described shape. 
The condition given by Eq. 3 is equivalent to 

(4) 

Note that all correlation matrices are symmetric, so MtM~ = MtMv. We see that 
Eq. 4 gives a quadratic form. Let us put Eq. 4 into a standard form. Toward this 
end, let us define some useful terms. Let 

M = MtMv, 

M = HM + M') = HMtMv + MvMt), 

Vi HWt + wv ), 

~w Wt - Wv , 

and 

~ - IM-1 (M ')~ w=w-i -M w. 

Now an important result can be stated. The proof is omitted. 

Proposition 1. \lEt . \lEv = 0 is equivalent to 

(5) 

(6) 

(7) 

(8) 

(9) 

(W - w)'M(w - w) = t~w[M + t(M' - M)M-1 (M - M')l~w. 0 (10) 

The matrix M of the quadratic form given by Eq. 10 is "usually" positive definite. 
As the number of observations nt and nv of training and validation data increase 
without bound, M converges to a positive definite matrix. In what follows it will 
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always be assumed that M is indeed positive definite. Given this, the locus defined 
by V' Et .1 V' Ev is an ellipsoid. The centroid is W, the orientation is determined by 
the characteristic vectors of M, and the length of the k'th semiaxis is v' c/ Ak, where 
c is the constant on the righthand side of Eq. 10 and 'xk is the k'th characteristic 
value of M. 

4 THE MAGIC PLANE 

Given the least-squares weight vector Wt derived from the training data and a 
candidate early stopping weight vector Wes, any least-squares weight vector Wv 
from a validation set must lie on a certain plane, the 'magic plane.' The proof of 
this statement is omitted. 

Proposition 2. The condition that Wt, W v, and Wes all lie on the magic ellipsoid, 

(Wt -w)/M(wt -w) = (wv -w)/M(wv -w) = (wes -wYM(wes -w) = c, (11) 

implies 
(Wt - wes)/Mwv = (Wt - wes)/Mwes. 0 (12) 

This shows that Wv lies on a plane, the magic plane, with normal M/(wt - wes). 
The reader will note a certain difficulty here, namely that M = MtMv depends on 
the particular validation set used, as does W v. However, we can make progress by 
considering only a fixed correlation matrix Mv and letting W v vary. Let us suppose 
the inputs (Xl, X2, •• . ,Xp) are LLd. Gaussian random variables with mean zero and 
some covariance E. (Here the inputs are random but they are observed exactly, so 
the error model y = w/x + € still applies.) Then 

(Mv) = (X~Xv) = nvE, 

so in Eq. 12 let us replace Mv with its expected value nv:E. That is, we can 
approximate Eq. 12 with 

(13) 

Now consider the probability that a particular point w(t) on the trajectory from 
w(O) to Wt is an early stopping point, that is, V' Et(w(t)) . V' Ev(w(t)) = O. This is 
exactly the probability that Eq. 12 is satisfied, and approximately the probability 
that Eq. 13 is satisfied. This latter approximation is easy to calculate: it is the 
mass of an infinitesimally-thin slab cutting through the distribution of least-squares 
validation weight vectors. Given the usual additive noise model y = w/x + € with € 

being Li.d. Gaussian distributed noise with mean zero and variance (f2, the least­
squares weights are approximately distributed as 

(14) 

when the number of data is large. 

Consider now the plane n = {w : Wi ft = k}. The probability mass on this plane as 
it cuts through a Gaussian distribution N(/-t, C) is then 

pn(k, ft) = (27rft/Cft)-1/2 exp( _~ (k ~~:)2) ds (15) 

where ds denotes an infinitesimal arc length. (See, for example, Sec. VIII-9.3 of 
von Mises [3].) 
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Figure 1: Histogram of early stopping points along a trajectory, with bins of equal 
arc length. An approximation to the probability of stopping (Eq. 16) is superim­
posed. Altogether 1000 validation sets were generated for a certain training set; of 
these, 288 gave "don't start" solutions, 701 gave early stopping solutions (which are 
binned here) somewhere on the trajectory, and 11 gave "don't stop" solutions. 

5 PROBABILITY OF STOPPING AT A GIVEN POINT 

Let us apply Eq. 15 to the problem at hand. Our normal is ft = nv :EMt (w t - Wes ) 

and the offset is k = ft' W es. A formal statement of the approximation of PO can 
now be made. 

Proposition 3. Assuming the validation correlation matrix X~Xv equals the mean 
correlation matrix nv~, the probability of stopping at a point Wes = w(t) on the 
trajectory from w(O) to Wt is approximately 

with 
(17) 

How useful is this approximation? Simulations were carried out in which the initial 
weight vector w(O) and the training data (nt = 20) were fixed, and many validation 
sets of size nv = 20 were generated (without fixing X~Xv). The trajectory was 
divided into segments of equal length and histograms of the number of early stopping 
weights on each segment were constructed. A typical example is shown in Figure 1. 
It can be seen that the empirical histogram is well-approximated by Eq. 16. 

If for some w(t) on the trajectory the magic plane cuts through the true weights 
w·, then Po will have a peak at t. As the number of validation data nv increases, 
the variance of Wv decreases and the peak narrows, but the position w(t) of the 
peak does not move. As nv -t 00 the peak becomes a spike at w(t). That is, the 
peak of Po for a finite validation set is the same as if we had access to the true 
generalization error. In this sense, early stopping does the right thing. 

It has been observed that when early stopping is employed, the validation error 
may decrease forever and never rise - thus the 'early stopping' procedure yields the 
least-squares weights. How common is this phenomenon? Let us consider a fixed 
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training set and a fixed initial weight vector, so that the trajectory is fixed. Letting 
the validation set range over all possible realizations, let us denote by Pn(t) = 
Pn(k(t), n(t)) the probability that training stops at time t or later. 1- Pn(O) is the 
probability that validation error rises immediately upon beginning training, and let 
us agree that Pn(oo) denotes the probability that validation error never increases. 
This Pn(t) is approximately the mass that is "behind" the plane n'wv = n'wes, 
"behind" meaning the points Wv such that (wv - wes)'ft < O. (The identification 
of Pn with the mass to one side of the plane is not exact because intersections of 
magic planes are ignored.) As Eq. 15 has the form of a Gaussian p.dJ., it is easy 
to show that 

-nw 
( k A' "') 

Pq(k, ft) = G (n'Cft)1/2 (18) 

where G denotes the standard Gaussian c.dJ., G(z) = (211')-1/2 �J�~�o�o� exp( -t2 /2)dt. 
Recall that we take the normal ft of the magic plane through Wes as ft = EMt(wt­
wes). For t = 0 there is no problem with Eq. 18 and an approximation for the 
"never-starting" probability is stated in the next proposition. 

Proposition 4. The probability that validation error increases immediately upon 
beginning training ("never starting"), assuming the validation correlation matrix 
�X�~�X�v� equals the mean correlation matrix nv:E, is approximately 

1 - Pn(O) = 1 - G (Fv (w'" - w(O))'MtE(wt - w(O)) ). 0 (19) 
U [(Wt - w(O))'MtEMt(wt - w(0))P/2 

With similar arguments we can develop an approximation to the "never-stopping" 
probability. 

Proposition 5. The probability that training continues indefinitely ("never stop­
ping"), assuming the validation correlation matrix �X�~�X�v� equals the mean correla­
tion matrix nvE, is approximately 

Pn(oo) = G (Fv (w'" - Wt)'Mt:E(±S"')) . 
U A"'[(s"')'Es"'j1/2 

(20) 

In Eq. 20 pick +s'" if (Wt - w(O))'s'" > 0, otherwise pick -s"'. 0 

Simulations are in good agreement with the estimates given by Propositions 4 and 
5. 

6 EXTENDING THE THEORY TO NONLINEAR 
SYSTEMS 

It may be possible to extend the theory presented in this paper to nonlinear approx­
imators. The elementary concepts carryover unchanged, although it will be more 
difficult to describe them algebraically. In a nonlinear early stopping problem, there 
will be a surface corresponding to the magic ellipsoid on which 'VEt ...L 'V Ev , but 
this surface may be nonconvex or not simply connected. Likewise, corresponding 
to the magic plane there will be a surface on which least-squares validation weights 
must fall, but this surface need not be fiat or unbounded. 

It is customary in the world of statistics to apply results derived for linear systems 
to nonlinear systems by assuming the number of data is very large and various 




