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Abstract 

Harmony networks have been proposed as a means by which con­
nectionist models can perform symbolic computation. Indeed, pro­
ponents claim that a harmony network can be built that constructs 
parse trees for strings in a context free language. This paper shows 
that harmony networks do not work in the following sense: they 
construct many outputs that are not valid parse trees. 

In order to show that the notion of systematicity is compatible with connectionism, 
Paul Smolensky, Geraldine Legendre and Yoshiro Miyata (Smolensky, Legendre, 
and Miyata 1992; Smolen sky 1993; Smolen sky, Legendre, and Miyata 1994) pro­
posed a mechanism, "Harmony Theory," by which connectionist models purportedly 
perform structure sensitive operations without implementing classical algorithms. 
Harmony theory describes a "harmony network" which, in the course of reaching a 
stable equilibrium, apparently computes parse trees that are valid according to the 
rules of a particular context-free grammar. 

Harmony networks consist of four major components which will be explained in 
detail in Section 1. The four components are, 

Tensor Representation: A means to interpret the activation vector of a connec­
tionist system as a parse tree for a string in a context-free language. 

Harmony: A function that maps all possible parse trees to the non-positive inte­
gers so that a parse tree is valid if and only if its harmony is zero. 

Energy: A function that maps the set of activation vectors to the real numbers 
and which is minimized by certain connectionist networks!. 

Recursive Construction: A system for determining the weight matrix of a con­
nectionist network so that if its activation vector is interpreted as a parse 

1 Smolensky, Legendre and Miyata use the term "harmony" to refer to both energy and 
harmony. To distinguish between them, we will use the term that is often used to describe 
the Lyapunov function of dynamic systems, "energy" (see for example Golden 1986). 
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tree, then the network's energy is the negation of the harmony of that parse 
tree. 

Smolen sky et al. contend that, in the process of minimizing their energy values, 
harmony networks implicitly maximize the harmony of the parse tree represented by 
their activation vector. Thus, if the harmony network reaches a stable equilibrium 
where the energy is equal to zero, the parse tree that is represented by the activation 
vector must be a valid parse tree: 

When the lower-level description of the activation-spreading pro­
cess satisfies certain mathematical properties, this process can be 
analyzed on a higher level as the construction of that structure 
including the given input structure which maximizes Harmony. 
(Smolensky 1993, p848, emphasis is original) 

Unfortunately, harmony networks do not work - they do not always construct 
maximum-harmony parse trees. The problem is that the energy function is defined 
on the values of the activation vector. By contrast, the harmony function is defined 
on possible parse trees. Section 2 of this paper shows that these two domains are 
not equal, that is, there are some activation vectors that do not represent any parse 
tree. 

The recursive construction merely guarantees that the energy function passes 
through zero at the appropriate points; its minima are unrestricted . So, while 
it may be the case that the energy and harmony functions are negations of one 
another, it is not always the case that a local minimum of one is a local maximum 
of the other. More succinctly, the harmony network will find minima that are not 
even trees, let alone valid parse trees. 

The reason why harmony networks do not work is straightforward. Section 3 shows 
that the weight matrix must have only negative eigenvalues, for otherwise the net­
work constructs structures which are not valid trees. Section 4 shows that if the 
weight matrix has only negative eigenvalues, then the energy function admits only 
a single zero - the origin. Furthermore, we show that the origin cannot be inter­
preted as a valid parse tree. Thus, the stable points of a harmony network are not 
valid parse trees. 

1 HARMONY NETWORKS 

1.1 TENSOR REPRESENTATION 

Harmony theory makes use of tensor products (Smolensky 1990; Smolensky, Legen­
dre, and Miyata 1992; Legendre, Miyata, and Smolensky 1991) to convolve symbols 
with their roles. The resulting products are then added to represent a labelled tree 
using the harmony network's activation vector. The particular tensor product used 
is very simple: 

(aI, a2,· · ·, an) <8> (bl , b2,.·., bm ) = 
(albl , alb2, ... , a}bm , a2bl, a2 b2, ... , a2bm, .. . , anbm ) 

If two tensors of differing dimensions are to be added , then they are essentially 
concatenated. 

Binary trees are represented with this tensor product using the following recursive 
rules: 

1. The tensor representation of a tree containing no vertices is O. 



Harmony Networks Do Not Work 33 

Table 1: Rules for determining harmony and the weight matrix. Let G = (V, E, P, S) 
be a context-free grammar of the type suggested in section 1.2. The rules for 
determining the harmony of a tree labelled with V and E are shown in the second 
column. The rules for determining the system of equations for recursive construction 
are shown in the third column. (Smolensky, Legendre, and Miyata 1992; Smolensky 
1993) 

Grammar Harmony Rule Energy Equation 
Element 

S 
For every node labelled Include (S+00r,)Wroot(S+00rr) = 2 
S add -1 to H(T). in the system of equations 

xEE 
For every node labelled Include (x +60r,)Wroot (x +60r,) = 2 
x add -1 to H(T). in the system of equations 
For every node labelled 
x add -2 or -3 to H(T) Include (x+60r,)Wroot(x+00r,) = 4 

x E V\ depending on whether or 6 in the system of equations, depend-

{S} 
or not x appears on ing on whether or not x appears on the 
the left of a produc- left of a production with two symbols 
tion with two symbols on the right. 
on the right. 
For every edge where Include in the system of equations, 

x - yz x is the parent and y (x + 60 r,)Wroot (6 + y 0 r,) = -2 
or x - is the left child add 2. (0 + y 0 r,)Wroot(x + 60 r,) = -2 
yE P Similarly, add 2 every 

(x + 60 r,)Wroot(O + z 0 r,) = -2 time z is the right child 
of x. (6 + z 0 r,)Wroot(x + 6® r,) = -2 

2. If A is the root of a tree, and TL, TR are the tensor product representations 
of its left subtree and right subtree respectively, then A + TL 0 r, + TR 0 rr 
is the tensor representation of the whole tree. 

The vectors, r" and rr are called "role vectors" and indicate the roles of left child 
and right child. 

1.2 HARMONY 

Harmony (Legendre, Miyata, and Smolensky 1990; Smolensky, Legendre, and Miy­
ata 1992) describes a way to determine the well-formedness of a potential parse tree 
with respect to a particular context free grammar. Without loss of generality, we 
can assume that the right-hand side of each production has at most two symbols, 
and if a production has two symbols on the right, then it is the only production for 
the variable on its left side. For a given binary tree, T, we compute the harmony 
of T, H(T) by first adding the negative contributions of all the nodes according to 
their labels, and then adding the contributions of the edges (see first two columns 
of table 1). 
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1.3 ENERGY 

Under certain conditions, some connectionist models are known to admit the fol­
lowing energy or Lyapunov function (see Legendre, Miyata, and Smolensky 1991): 

1 
E(a) = --atWa 

2 

Here, W is the weight matrix of the connectionist network, and a is its activation 
vector. Every non-equilibrium change in the activation vector results in a strict 
decrease in the network's energy. In effect, the connectionist network serves to 
minimize its energy as it moves towards equilibrium. 

1.4 RECURSIVE CONSTRUCTION 

Smolensky, Legendre, and Miyata (1992) proposed that the recursive structure of 
their tensor representations together with the local nature of the harmony calcu­
lation could be used to construct the weight matrix for a network whose energy 
function is the negation of the harmony of the tree represented by the activation 
vector. First construct a matrix W root which satisfies a system of equations. The 
system of equations is found by including equations for every symbol and produc­
tion in the grammar, as shown in column three of table 1. Gourley (1995) shows 
that if W is constructed from copies of W root according to a particular formula, and 
if aT is a tensor representation for a tree, T, then E(aT) = -H(T). 

2 SOME ACTIVATIONS ARE NOT TREES 

As noted above, the reason why harmony networks do not work is that they seek 
minima in their state space which may not coincide with parse tree representations. 
One way to amelioarate this would be to make every possible activation vector 
represent some parse tree. If every activation vector represents some parse tree, 
then the rules that determine the weight matrix will ensure that the energy minima 
agree with the valid parse trees. Unfortunately, in that case, the system of equations 
used to determine W root has no solution. 

If every activation vector is to represent some parse tree, and the symbols of the 
grammar are two dimensional, then there are symbols represented by each vector, 
(Xl, xt), (Xl, X2), (X2' xt), and (X2' X2), where Xl 1= X2 . These symbols must satisfy 
the equations given in table 1 , and so, 

Xi{Wrootll + Wroot12 + Wroot~l + Wroot~~) 
XiWrootll + XIX2 W root12 + XIX2 W root:n + x~Wroot:n 
X~Wrootll + XIX2Wrootl~ + XIX2 W root :n + xiWroot~2 

x~(Wrootll + Wroot12 + Wroot~l + Wrootn) 

Because hi E {2, 4, 6}, there must be a pair hi, hj which are equal. In that 
case, it can be shown using Gaussian elimination that there is no solution for 
Wrootll , Wrootl~' Wroot~l , Wroot~~. Similarly, if the symbols are represented by vec­
tors of dimension three or greater, the same contradiction occurs. 

Thus there are some activation vectors that do not represent any tree - valid or 
invalid. The question now becomes one of determining whether all of the harmony 
network's stable equilibria are valid parse trees. 
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Figure 1: Energy functions of two-dimensional harmony networks. In each case, the 
points i and f respectively represent an initial and a final state of the network. In 
a, one eigenvector is positive and the other is negative; the hashed plane represents 
the plane E = 0 which intersects the energy function and the vertical axis at the 
origin. In b, one eigenvalue is negative while the other is zero; The heavy line 
represents the intersection of the surface with the plane E = 0 and it intersects the 
vertical axis at the origin. 

3 NON-NEGATIVE EIGENVECTORS YIELD 
NON-TREES 

If any of the eigenvalues of the weight matrix, W, is positive, then it is easy to show 
that the harmony network will seek a stable equilibrium that does not represent 
a parse tree at all. Let A > 0 be a positive eigenvalue of W, and let e be an 
eigenvector, corresponding to A, that falls within the state space. Then, 

1 1 
E(e) = --etWe = --Aete < O. 

2 2 
Because the energy drops below zero, the harmony network would have to undergo 
an energy increase in order to find a zero-energy stable equilibrium. This cannot 
happen, and so, the network reaches an equilibrium with energy strictly less than 
zero. 

Figure la illustrates the energy function of a harmony network where one eigenvalue 
is positive. Because harmony is the negation of energy, in this figure all the valid 
parse trees rest on the hashed plane, and all the invalid parse trees are above it. As 
we can see, the harmony network with positive eigenvalues will certainly find stable 
equilibria which are not valid parse tree representations. 

Now, suppose W, the weight matrix, has a zero eigenvalue. If e is an eigenvector 
corresponding to that eigenvalue, then for every real a, aWe = O. Consequently, 
one of the following must be true: 

1. ae is not a stable equilibrium. In that case, the energy function must drop 
below zero, yielding a sub-zero stable equilibrium - a stable equilibrium 
that does not represent any tree. 

2. ae is a stable equilibrium. Then for every a, ae must be a 
valid tree representation. Such a situation is represented in fig-
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Figure 2: The energy function of a two-dimensional harmony network where both 
eigenvalues are negative. The vertical axis pierces the surface at the origin , and the 
points i and f respectively represent an initial and a final state of the network. 

ure Ib where the set of all points ae is represented by the heavy 
line. This implies that there is a symbol, (al, a2, . . . , an), such that 
Ckl(al , a2, .. . ,an),Ck2(al,a2, . . . ,an), .. . ,an2+l(al,a2, ... , an) are also all 
symbols. As before, this implies that Wroot must satisfy the equation, 

- t - hi hi E 
«al, ... , an) + 0 ® r,) Wroot«al, ... , an) + 0 0 r,) 2" ' {2 4 6} 

a · " , 
for i = 1 ... n2 + 1. Again using Gaussian elimination, it can be shown that 
there is no solution to this system of equations. 

In either case, the harmony network admits stable equilibria that do not represent 
any tree. Thus, the eigenvalues must all be negative. 

4 NEGATIVE EIGENVECTORS YIELD NON-TREES 

If all the eigenvalues of the weight matrix are negative, then the energy function has 
a very special shape: it is a paraboloid centered on the origin and concave in the 
direction of positive energy. This is easily seen by considering the first and second 
derivatives of E: 

8E(x) __ ~ W, .. x . 8 2 E(x) - -W, . . 
8x; - L..j '.1' 8x;8x; - '.1 

Clearly, all the first derivatives are zero at the origin, and so, it is a critical point . 
Now the origin is a strict minimum if all the roots of the following well-known 
equation are positive: 

0= det = det I-W - All 

det 1- W - All is the characteristic polynomial of -W. If A is a root then it is an 
eigenvalue of - W, or equivalently, it is the negative of an eigenvalue of W . Because 
all of W's eigenvalues are negative, the origin is a strict minimum, and indeed it is 
the only minimum. Such a harmony network is illustrated in Figure 2. 
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Thus the origin is the only stable point where the energy is zero, but it cannot 
represent a parse tree which is valid for the grammar. If it does, then 

S + TL 0 r, + TR (9 rr = (0, . . . ,0) 

where TL, TR are appropriate left and right subtree representations, and S is the 
start symbol of the grammar. Because each of the subtrees is multiplied by either 
r, or rr, they are not the same dimension as S, and are consequently concatenated 
instead of added. Therefore S = O. But then, Wroot must satisfy the equation 

(0 + 0 (9 r,)Wroot(O + 0 (9 r,) =-2 

This is impossible, and so, the origin is not a valid tree representation. 

5 CONCLUSION 

This paper has shown that in every case, a harmony network will reach stable 
equilibria that are not valid parse trees. This is not unexpected. Because the 
energy function is a very simple function, it would be more surprising if such a 
connectionist system could construct complicated structures such as parse trees for 
a context free grammar. 
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