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Abstract

Statistically independent features can be extracted by finding a fac-
torial representation of a signal distribution. Principal Component
Analysis (PCA) accomplishes this for linear correlated and Gaus-
sian distributed signals. Independent Component Analysis (ICA),
formalized by Comon (1994), extracts features in the case of lin-
ear statistical dependent but not necessarily Gaussian distributed
signals. Nonlinear Component Analysis finally should find a facto-
rial representation for nonlinear statistical dependent distributed
signals. This paper proposes for this task a novel feed-forward,
information conserving, nonlinear map - the explicit symplectic
transformations. It also solves the problem of non-Gaussian output
distributions by considering single coordinate higher order statis-
tics.

1 Introduction

In previous papers Deco and Brauer (1994) and Parra, Deco, and Miesbach (1995)
suggest volume conserving transformations and factorization as the key elements
for a nonlinear version of Independent Component Analysis. As a general class
of volume conserving transformations Parra et al. (1995) propose the symplectic
transformation. It was defined by an implicit nonlinear equation, which leads to a
complex relaxation procedure for the function recall. In this paper an explicit form
of the symplectic map is proposed, overcoming thus the computational problems.
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In order to correctly measure the factorization criterion for non-Gaussian output
distributions, higher order statistics has to be considered. Comon (1994) includes
in the linear case higher order cumulants of the output distribution. Deco and
Brauer (1994) consider multi-variate, higher order moments and use them in the
case of nonlinear volume conserving transformations. But the calculation of multi-
coordinate higher moments is computational expensive.

The factorization criterion for statistical independence can be expressed in terms of
minimal mutual information. Considering only volume conserving transformations
allows to concentrate on single coordinate statistics, which leads to an important
reduction of computational complexity. So far, this approach (Deco & Schiirman,
1994; Parra et al., 1995) has been restricted to second order statistic. The present
paper discusses the use of higher order cumulants for the estimation of the single
coordinate output distributions. The single coordinate entropies measured by the
proposed technique match the entropies of the sampled data more accurately. This
leads in turns to better factorization results.

2 Statistical Independence

More general than decorrelation used in PCA the goal is to extract statistical
independent features from a signal distribution p(x). We look for a determinis-
tic transformation on R": y = f(x) which generates a factorial representation
p(y) =II; (i), or at least a representation where the individual coordinates p(y;)
of the output variable y are “as factorial as possible”. This can be accomplished
by minimizing the mutual information M I[p(y)].

0< MI[p(y)] =) Hlp(w)] - Hlp(y)), (1)

i=1

since M I[p(y)] = 0 holds if p(y) is factorial. The mutual information can be used
as a measure of “independence”. The entropies H in the definition (1) are defined

as usual by H(p(y)] = — [*°, p(y)In p(y) dy.

As in linear PCA we select volume conserving transformations, but now without
restricting ourselves to linearity. In the noise-free case of reversible transformations
volume conservation implies conservation of entropy from the input x to the output
y, t.e. H[p(y)] = H[p(x)] = const (see Papoulis, 1991). The minimization of mutual
information (1) reduces then to the minimization of the single coordinate output
entropies H[p(y;)]. This substantially simplifies the complexity of the problem,
since no multi-coordinate statistics is required.

2.1 Measuring the Entropy with Cumulants

With an upper bound minimization criterion the task of measuring entropies can
be avoided (Parra et al., 1995):

Hlp(w)] < 3 In(2re) + 3 Ino?. (2)
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Figure 1: LEFT: Doted line: exponential distribution with additive Gaussian noise
sampled with 1000 data points. (noise-variance/decay-constant = 0.2). Dashed
line: Gaussian approximation equivalent to the Edgeworth approximation to second
order. Solid line: Edgeworth approximation including terms up to fourth order.
RIGHT: Structure of the volume conserving explicit symplectic map.

The minimization of the individual output coordinate entropies H [p(y;)] simplifies
to the minimization of output variances o;. For the validity of that approach it is
crucial that the map y = f(x) transforms the arbitrary input distribution p(x) into
a Gaussian output distribution. But volume conserving and continuous maps can
not transform arbitrary distributions into Gaussians. To overcome this problem one
includes statistics - higher than second order - to the optimization criterion.

Comon (1994) suggests to use the Edgeworth expansion of a probability distribu-
tion. This leads to an analytic expression of the entropy in terms of measurable
higher order cumulants. Edgeworth expands the multiplicative correction to the
best Gaussian approximation of the distribution in the orthonormal basis of Her-
mite polynomials hq(y). The expansion coefficients are basically given by the cu-
mulants ¢, of distribution pgy)‘ The Edgeworth expansions reads for a zero-mean
distribution with variance o, (see Kendall & Stuart, 1969)

ply) = FAeT37 f(y)
2no ( (3)
fy) = 1+ &sha(%) + 555ha(E) + pishs(2) + ..

Note, that by truncating this expansion at a certain order, we obtain an approx-
imation p,pp(y), which is not strictly positive. Figure 1, left shows a sampled
exponential distribution with additive Gaussian noise.

By cutting expansion (3) at fourth order, and further expanding the logarithm in
definition of entropy up to sixth order, Comon (1994) approximates the entropy by,
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1 le2 12 Te§ 1ckeq
H[p(y)app]ﬁ 51!1(21?8)-5—1]10’— ——‘;5—18—‘0—_5—18—‘0—_54-‘8—;“6; (4)
We suggest to use this expression to minimize the single coordinate entropies in the
definition of the mutual information (1).

2.2 Measuring the Entropy by Estimating an Approximation

Note that (4) could only be obtained by truncating the expansion (3). It is there-
fore limited to fourth order statistic, which might be not enough for a satisfactory
approximation. Besides, the additional approximation of the logarithm is accurate
only for small corrections to the best Gaussian approximation, z.e. for f(y) ~ 1.
For distributions with non-Gaussian tails the correction terms might be rather large
and even negative as noted above. We therefore suggest alternatively, to measure
the entropy by estimating the logarithm of the approximated distribution In papp(¥)
with the given data points y, and using Edgeworth approximation (3) for papp (¥),

N N
HpW) &~ Y npapp () = const +lno—~ < >l fw)  (5)
v=1 v=1

Furthermore, we suggest to correct the truncated expansion psp, by setting
fapp (y) — 0 for all fap, (y) < 0. For the entropy measurement (5) there is in
principle no limitation to any specific order.

In table 1 the different measures of entropy are compared. The values in the row
labeled ’partition’ are measured by counting the numbers n(?) of data points falling
in equidistant intervals 7 of width Ay and summing —p(i) Ay In p(?) over all intervals,
with p(i)Ay = n(i)/N. This gives good results compared to the theoretical values
only because of the relatively large sampling size. These values are presented here
in order to have an reliable estimate for the case of the exponential distribution,
where cumulant methods tend to fail.

The results for the exponential distribution show the difficulty of the measurement
proposed by Comon, whereas the estimation measurement given by equation (5) is
stable even when considering (for this case) unreliable 5th and 6th order cumulants.
The results for the symmetric-triangular and uniform distribution demonstrate the
insensibility of the Gaussian upper bound for the example of figure 2. A uniform
squared distribution is rotated by an angle . On the abscissa and ordinate a
triangular or uniform distribution are observed for the different angles o = I1/4
or @ = ( respectively. The approximation of the single coordinate entropies with
a Gaussian measure is in both cases the same. Whereas measurements including
higher order statistics correctly detect minimal entropy (by fixed total information)
for the uniform distribution at o = 0.

3 Explicit Symplectic Transformation

Different ways of realizing a volume conserving transformation that guarantees
H[p(x)] = H[p(x)] have been proposed (Deco & Schiirman, 1994; Parra et al.,
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Measured entropy of Gauss uniform triangular exponential
sampled distributions symmetric | + Gauss noise
partition 1.35+ .02 | .024 4+ .006 | .14 4+ .02 1.31 + .03
Gaussian upper bound (2) | 1.415+.02 | .18 +.016 .18 +.02 1.53 4 .04
Comon, eq. (4) 1.414 £ .02 .14 £+ .015 17 +.02 30+£25
Estimate (5) - 4th order | 1.414 £ .02 | .13 £ .015 | .17 & .02 1.39+ .05
Estimate (5) - 6th order 1.414 £ .02 | .092 + .001 16 £.02 1.3+ .5
theoretical value 1.419 .0 153

Table 1: Entropy values for different distributions sampled with N = 1000 data
points and the different estimation methods explained in the text. The standard
deviations are obtained by multiple repetition of the experiment.

1995). A general class of volume conserving transformations are the symplectic
maps (Abraham & Marsden, 1978). An interesting and for our purpose important
fact is that any symplectic transformation can be expressed in terms of a scalar
function. And in turn any scalar function defines a symplectic map. In (Parra
et al., 1995) a non-reflecting symplectic transformation has been presented. But
its implicit definition results in the need of solving a nonlinear equation for each
data point. This leads to time consuming computations which limit in practice the
applications to low dimensional problems (n< 10). In this work reflecting symplec-
tic transformations with an explicit definition are used to define a ”feed-forward”
volume conserving maps. The input and output space is divided in two partitions
x = (x1,%2) and y = (y1,¥2), with x1,X2,y1,y2 € R"/2.

OP(x2)

é‘xz

0Q(y1)
dy1 '

, Y2=Xa2+

Y1 =X1 —

(6)

The structure of this symplectic map is represented in figure 1, right. Two scalar
functions P : ®7/2 — R and Q : R*/2 — R can be chosen arbltran]y Note that
for quadratic functions equation (6) represents a linear transformation. In order
to have a general transformation we introduce for each of these scalar functions a
3-layer perceptron with nonlinear hidden units and a single linear output unit:

P(x2) = wa - g(Wax2) Q(y1) = w1 - g(Wiy1). (7)
The scalar functions P and ) are parameterized by the network parameters
wi,ws € R™ and Wy, Wy € R™ x R™2. The hidden-unit, nonlinear activation
function g applies to each component of the vectors Wiy: and Waxy respectively.
Because of the structure of equation (6) the output coordinates y; depend only addi-
tively on the input coordinates x;. To obtain a more general nonlinear dependence
a second symplectic layer has to be added.

To obtain factorial distributions the parameters of the map have to be trained.
The approximations of the single coordinate entropies (4) or (5) are inserted in the
mutual information optimization criterion (1). These approximations are expressed
through moments in terms of the measured output data points. Therefore, the









