KODAK IMAGELINK™ OCR
Alphanumeric Handprint Module

Alexander Shustorovich and Christopher W. Thrasher
Business Imaging Systems, Eastman Kodak Company, Rochester, NY 14653-5424

ABSTRACT

This paper describes the Kodak Imagelink ™ OCR alphanumeric
handprint module. There are two neural network algorithms at its
core: the first network is trained to find individual characters in an
alphanumeric field, while the second one performs the classification.
Both networks were trained on Gabor projections of the original
pixel images, which resulted in higher recognition rates and greater
noise immunity. Compared to its purely numeric counterpart
(Shustorovich and Thrasher, 1995), this version of the system has a
significant application specific postprocessing module. The system
has been implemented in specialized parallel hardware, which allows
it to run at 80 char/sec/board. It has been installed at the Driver and
Vehicle Licensing Agency (DVLA) in the United Kingdom, and its
overall success rate exceeds 96% (character level without rejects),
which translates into 85% field rate. If approximately 20% of the
fields are rejected, the system achieves 99.8% character and 99.5%
field success rate.

1 INTRODUCTION

The system we describe below was designed to process alphanumeric fields extracted
from forms. The major assumptions were that (1) the form layout and definition allows
the system to capture the field image with a single line of characters, (2) the
characters are handprinted capital letters and numerals, with possible addition of
several special characters, and (3) the characters may occasionally touch, but generally
they do not overlap. We also assume that some additional information about the
contents of the field is available to assist in the process of disambiguation. Otherwise,
it is virtually impossible to distinguish not only between " O " and zero, but also " I "
and one, " Z " and two, " S " and five, etc.

A good example of such an application is the processing of vehicle registration forms
at the Driver and Vehicle Licensing Agency (DVLA) in the United Kingdom. The
alphamumeric field in question contains a license plate. There are 29 allowed patterns
of character combinations, from two to seven characters long. For example, "
A999AAA " is a valid license, whereas " A9A9A9 " is not (here " A " stands for any
alpha character, " 9 " - for any numeric character). In addition, every field has a



KODAK IMAGELINK™ OCR Alphanumeric Handprint Module 779

control character box on the right. This control character is computed as a remainder
of the integer division by 37 of a linear combination of numeric values of the
characters in the main field. Ambiguous characters, namely "O ", " 1", and " S " are
not allowed in the role of the control character, so they are replaced here by " - ", " +
“,and " /" (not a very good choice, and the 37th character used is the " % " To
make things more complicated, sometimes the control character is not available at the
moment of filing the form (at a local post office), and this lack of knowledge is
indicated by putting an asterisk instead. Later we will discuss possible ways to use this
additional information in an application specific postprocessing module.

2 SEGMENTATION AND ALTERNATIVE APPROACHES

The most challenging problem for handprint OCR is finding individual characters in a
field. A number of approaches to this problem can be found in the literature, the two
most common being (1) segmentation (Gupta et al., 1993, as an example of a recent

publication), and (2) combined segmentation and recognition (Keeler and Rumelhart,
1992).

The segmentation approach has difficulty separating touching characters, and recently
the consensus of practitioners in the field started shifting towards combined
segmentation and recognition. In this scheme, the algorithm moves a window of a
certain width along the field, and confidence values of competing classification
hypotheses are used (sometimes with a separate centered/noncentered node) to decide
if the window is positioned on top of a character. In the Saccade system (Martin et al.,
1993), for example, the neural network was trained not only to recognize characters in
the center of the moving window (and whether there is a character centered in the
window), but also to make corrective jumps (saccades) to the nearest character and,
after classification, to the next character.

Still another variation on the theme is an arrangement when the classification window
is duplicated with one- or several-pixel shifts along the field (Benjio et al., 1994).
Then the outputs of the classifiers serve as input for a postprocessing module (in this
paper, aHiddenMarkovModel)usedtodamdewhlchofthemqumdeofprmessmg
windows actually have centered characters in them.

All these approaches have deficiencies. As we mentioned earlier, touching characters
are difficult for autonomous segmenters. The moving (and jumping) window with a
single centered/noncentered node tends to miss narrow characters and sometimes to
duplicate wide ones. The replication of a classifier together with postprocessing tends
to be quite expensive computationally.

3 POSITIONING NETWORK

To do the positioning, we decided to introduce an array of output units corresponding
to successive pixels in the middle portion of the window. These nodes signal if a
center ("heart") of a character lies at the corresponding positions. Because the
precision with which a human operator can mark the character heart is low (usually
within one or two pixels at best), the target activations of three consecutive nodes are
set to one if there is a character heart at a pixel position corresponding to the middle
node. The rest of the target activations are set to zero.

The network is then trained to produce bumps of activation indicating the character
hearts. Two buffer regions on the left and on the right of the window (pixels without
comesponding output nodes) are necessary to allow all or most of the character
centered at each of the output node positions to fit inside the window. The
replacement of a single centered/noncentered node by an array allows us to average
output activations, generated by different window shifts, while corresponding to the
same position. This additional procedure allows us to slide the window several pixels



780 A. SHUSTOROVICH, C. W. THRASHER

at a time: the appropriate step is a trade-off between the processing speed and the
required level of robustness. The final procedure involves thresholding of the
activation-wave and the estimation of the predicted character position as the center of
mass of the activation-bubble. The resulting algorithm is very effective: touching
characters do not present significant problems, and only abnormally wide characters
sometimes fool the system into false alarms.

The system works with preprocessed images. Each field is divided into subfields of
disconnected groups of characters. These subfields are size-normalized to a height of
20 pixels. After that they are reassembled into a single field again, with 6 pixel gaps
between them. Two blank rows are added both along the top and the bottom of the
recombined field as preferred by the Gabor projection technique (Shustorovich, 1994).
In our current system, the input nodes of a sliding window are organized in a 24 x 36
array. The first, intermediary, layer of the network implements the Gabor projections.
It has 12 x 12 local receptive fields (LRFs) with fixed precomputed weights. The step
between LRFs is 6 pixels in both directions. We work with 16 Gabor basis functions
with circular Gaussian envelopes centered within each LRF; they are both sine and
cosine wavelets in four orientations and two sizes. All 16 projections from each LRF
constitute the input to a column of 20 hidden units, thus the second (first trainable)
hidden layer is organized in a three-dimensional array 3 x 5 x 20. The third hidden
layer of the network also has local receptive fields, they are three-dimensional 2 x 2 x
20 with the step 1 x 1 x 0. The units in the third hidden layer are also duplicated 20
times, thus this layer is organized in a three-dimensional array 2 x 4 x 20. The fourth
hidden layer has 60 units fully connected to the third layer. Finally, the output layer
has 12 units, also fully connected to the fourth layer.

The network was trained using a variant of the Back-Propagation algorithm. Both
training and testing sets were drawn from the field data collected at DVLA. The
training set contained approximately 60,000 characters from 8,000 fields, and about
5,000 characters from 650 fields were used for testing. On this test set, more than
92% of all character hearts were found within 1-pixel precision, and only 0.4% were
missed by more than 4 pixels.

4 CLASSIFICATION NETWORK

The structure of the classification network resembles that of the positioning network.
The Gabor projection layer works in exactly the same way, but the window size is
smaller, only 24 x 24 pixels. We chose this size because after height normalization to
20 pixels, only occasionally the characters are wider than 24 pixels. Widening the
window complicates training: it increases the dimensionality of the input while
providing information, mostly about irrelevant pieces of adjacent characters. As a
result, the second layer is organized as a 3 x 3 x 20 array of units with LRFs and
shared weights, the third is 8 2 x 2 x 20 array of units with LRFs, and there are 37
output units fully connected to the 80 units in the third layer. The number of output
units in this variant of our system has been determined by the intended application. It
was necessary to recognize uppercase letters, numerals, and also five special
characters, namely plus (+), minus (-), slash (/), percent (%), and asterisk (*). Since
additional information was available for the purposes of disambiguation, we combined
"O" and zero, "I " and one, " Z " and two, " S " and five, and so the number of
output classes became 26 (alpha) + 6 (numerals 3,4,6,7,89) + 5 (special characters) =
37.

Because we did not expect any positioning module to provide precision higher than 1
or 2 pixels, the classifier network was trained and tested on five copies of all centered
characters in the database, with shifts of 0, 1, and 2 pixels, both left and right. On the
same test set mentioned in the previous section, the corresponding character
recognition rates averaged 93.0%, 95.5%, and 96.0% for characters normalized to the















