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Abstract 

We have developed a foveated gesture recognition system that runs 
in an unconstrained office environment with an active camera. Us
ing vision routines previously implemented for an interactive envi
ronment, we determine the spatial location of salient body parts 
of a user and guide an active camera to obtain images of gestures 
or expressions. A hidden-state reinforcement learning paradigm is 
used to implement visual attention. The attention module selects 
targets to foveate based on the goal of successful recognition, and 
uses a new multiple-model Q-Iearning formulation. Given a set 
of target and distractor gestures, our system can learn where to 
foveate to maximally discriminate a particular gesture. 

1 INTRODUCTION 

Vision has numerous uses in the natural world. It is used by many organisms in 
navigation and object recognition tasks, for finding resources or avoiding predators. 
Often overlooked in computational models of vision, however, and particularly rel
evant for humans, is the use of vision for communication and interaction. In these 
domains visual perception is an important communication modality, either in ad
dition to language or when language cannot be used. In general, people place 
considerable weight on visual signals from another individual, such as facial expres
sion, hand gestures, and body language. We have been developing neurally-inspired 
methods which combine low-level vision and learning to model these visual abilities. 

Previously, we presented a method for view-based recognition of spatia-temporal 
hand gestures [2] and a similar mechanism for the analysis/real-time tracking of 
facial expressions [4]. These methods offered real-time performance and a relatively 
high level of accuracy, but required foveated images of the object performing the 
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gesture. There are many domains/tasks for which these are not unreasonable as
sumptions, such as interaction with a single user workstation or an automobile with 
a single driver. However the method had limited usefulness in unconstrained do
mains, such as "intelligent rooms" or interactive virtual environments, when the 
identity and location of the user are unknown. 

In this paper, we expand our gesture recognition method to include an active com
ponent, utilizing a foveated image sensor that can selectively track a person's hand 
or face as they walk through a room. The camera tracking and model selection 
routines are guided by an action-selection system that implements visual attention 
based on reinforcement learning. Using on a simple reward schedule, this attention 
system learns the appropriate object (hand, head) to foveate in order to maximize 
recognition performance. 

2 FOVEATED GESTURE ANALYSIS 

Our system for foveated gesture recognition combines person tracking routines, 
an active, high-resolution camera, and view-based normalized correlation analysis. 
First we will briefly describe the person tracking module and view-based analysis, 
then discuss their use with an active camera. 

We have implemented vision routines to track a user in in an office setting as part 
of our ALIVE system, an Artificial Life Interactive Video Environment[3]. This 
system can track people and identify head/hand locations as they walk about a 
room, and provides the contextual environment within which view-based gesture 
analysis methods can be successfully applied. The ALIVE system assumed little 
prior knowledge of the user, and operated on coarse-scale images. 1 ALIVE allows 
a user to interact with virtual artificial life creatures, through the use of a "magic
mirror" metaphor in which user sees him/herself presented in a video display along 
with virtual creatures. A wide field-of-view video camera acquires an image of the 
user, which is then combined with computer graphics imagery and projected on a 
large screen in front of the user. Vision routines in ALIVE compute figure/ground 
segmentation and analyze the user's silhouette to determine the location of head, 
hands, and other salient body features. We use only a single, calibrated, wide field
of-view camera to determine the 3-D position of these features. 2 For details of our 
person tracking method see [14]. 

In our approach to real-time expression matching/tracking, a set of view-based 
correlation models is used to represent spatio-temporal gesture patterns. We take 
a sequence of images representing the gesture to be trained, and build a set of 
view models that are sufficient to track the object as it performs the gesture. Our 
view models are normalized correlation templates, and can either be intensity-based 
or based on band-pass or wavelet-based signal representations.3 We applied our 
model to the problem of hand gesture recognition [2] as well as for tracking facial 
expressions [4]. For facial tracking, we implemented an interpolation paradigm to 
map view-based correlation scores to facial motor controls. We used the Radial Basis 
Function (RBF) method[7]; interpolation was performed using a set of exemplars 
consisting of pairs of real faces and model faces in different expressions, which were 

1 A simple mechanism for recognition of hand gestures was implemented in the original 
ALIVE system but made no use of high-resolution view models, and could only recognize 
pointing and waving motions defined by the motion of the centroid of the hand. 

2By assuming the the user is sitting or standing on the ground plane, we use the imaging 
and ground plane geometry to compute the location of the user in 3-D. 

3The latter have the advantage of being less dependent on illumination direction. 
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Figure 1: Overview of system for person tracking and active gesture recognition. 
Static, wide-field-of-view, camera tracks user's head and hands, which drives gaze 
control of active narrow-field-of-view camera. Foveated images are used for view
based gesture analysis and recognition. Graphical objects are rendered on video 
wall and can react to user's position, pose, and gestures. 

obtained by generating a 3-D model face and asking the user to match it. With this 
simple formalism, we were able to track expressions of a real user and interpolate 
equivalent 3-D model faces in real-time. 

This view-based analysis requires detailed imagery, which cannot be obtained from 
a single, fixed camera as the user walks about a room. To provide high resolution 
images for gesture recognition, we augment the wide field-of-view camera in our 
interactive environment with an active, narrow-field-of-view camera, as shown in 
Figure 1. Information about head/hand location from the existing ALIVE routines 
is used to drive the motor control parameters of the narrow field camera. Currently 
the camera can be directed to autonomously track head or hands . Using a highly 
simplified, two expression model offacial expression (neutral and surprised), we have 
been able to track facial expressions as users move about the room and the narrow 
angle camera followed the face. For details on this foveated gesture recognition see 
[5] 

3 VISUAL ATTENTION FOR RECOGNITION 

The visual routines in the ALIVE system can be used to track the head and hands 
of a user, and the active camera can provide foveated images for gesture recognition. 
If we know a priori which body part will produce the gesture of interest, or if we 
have a sufficient number of active cameras to track all body parts, then we have 
solved the problem. Of course, in practice there are more possible loci of gesture 
performance than there are active cameras, and we have to address the problem of 
action selection for visual routines, i.e. , attention. In our active gesture recognition 
system, we have adopted an action selection model based on reinforcement learning. 
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3.1 THE ACTIVE GESTURE RECOGNITION PROBLEM 

We define an Active Gesture Recognition (AGR) task as follows . First, we assume 
primitive routines exist to provide the continuous valued control and tracking of the 
different body parts that perform gestures . Second, we assume that body pose and 
hand/face state is represented as a feature set, based on the representation produced 
by our body tracker and view-based recognition system, and we define a gesture 
to be a configuration of the user's body pose and hand/face expression. Third, we 
assume that, in addition to there being actions for foveating all the relevant body 
parts, there is also a special action labeled accept, and that the execution of this 
action by the AG R system signifies detection of the gesture. Finally, the goal of 
the AGR task is to execute the accept action whenever the user is in the target 
gesture state, and not to perform that action when the user is in any other (e .g. 
distract or) state. The AGR system should use the foveation actions to optimally 
discriminate the target pattern frqm distractor patterns, even when no single view 
of the user is sufficient to decide what gesture the user is performing. 

An important problem in applying reinforcement learning to this task is that our 
perceptual observations may not provide a complete description of the user's state. 
Indeed, because we have a foveated image sensor we know that the user's true 
gestural state will be hidden whenever the user is performing a gesture and the 
camera is not foveated on the appropriate body part. By definition, a system for 
perceptual action selection must not assume a full observation of state is available, 
otherwise there would be no meaningful perception taking place. 

The AG R task can be considered as a Partially Observable Markov Decision Process 
(POMDP), which is essentially a Markov Decision Process without direct access to 
state[ll, 9]. Rather than attempt to solve them explicitly, we look to techniques 
for hidden state reinforcement learning to find a solution [10, 8, 6, 1]. A POMDP 
consists of a set of states in the world S, a set of observations 0, a set of actions 
A, a reward function R. After executing an action a, the likelihood of transitioning 
between two states s, s' is given by T(s, a, a'), an observation 0 is generated with 
probability O(s, a, 0). In practice, T and 0 are not easily obtainable, and we use 
reinforcement learning methods which do not require them a priori. 

Our state is defined by the users pose, facial expression, and hand configurations, ex
pressed in nine variables. Three are boolean and are provided directly by the person 
tracker: person-present, left-arm-extended, and right-arm-extended. Three 
more are provided by the foveated gesture recognition system, (face, left-hand, 
right-hand), and take on an integer number of values according to the number 
of view-based expressions/hand-poses: in our first experiments face can be one of 
neutral, smile, or surprise, and the hands can each be one of neutral, point, or 
grab. In addition, three boolean features represent the internal state of the vision 
system: head-foveated, left-hand-foveated, right-hand-foveated. At each 
time step, the world is defined by a state s E S, which is defined by these features . 
An observation, 0 E 0, consists of the same feature variables, except that those 
provided by the foveated gesture system (e.g., head and hands) are only observable 
when foveated. Thus the face variable is hidden unless the head-foveated variable 
is set, the left-hand variable hidden unless the left-hand-foveated variable set, 
and similarly with the right hand. Hidden variables are set to a undefined value. 

The set of actions, A, available to the AGR system are 4 foveation commands: 
look-body, look-head, look-left-hand, and look-right-hand plus the special 
accept action. Each foveation command causes the active camera to follow the 
respective body part, and sets the internal foveation feature bits accordingly. 
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The reward function provides a unit positive reward whenever the accept action 
is performed and the user is in the target state (as defined by an oracle, external 
to the AGR system), and a fixed negative reward of magnitude a when performed 
and the user is in a distractor (non-target) state. Zero reward is given whenever a 
foveation action is performed. 

3.2 HIDDEN-STATE REINFORCEMENT LEARNING 

We have implemented a instance-based method for hidden state reinforcement learn
ing, based on earlier work by McCallum [10]. The instance-based approach to re
inforcement learning replaces the absolute state with a distributed memory-based 
state representation. Given a history of action, reward, and observation tuples, 
(a[t], r[t], o[t]) , 0 :::; t :::; T, a Q-value is also stored with each time step, q[t], and 
Q-Iearning[12, 13] is performed by evaluating the similarity of recently observed tu
ples with sequences farther back in the history chain. Q-values are computed, and 
the Q-Iearning update rule applied, maintaining this distributed, memory-based 
representation of Q-values. 

As in traditional Q-Iearning, at each time step the utility of each action in the 
current state is evaluated. If full access to the state was available and a table 
used to represent Q values, this would simply be a table look-up operation, but in a 
POMDP we do not have full access to state. Using a variation on the instance based 
approach employed by McAllum's Nearest Sequence Memory (NSM) algorithm, we 
instead find the I< nearest neighbors in the history list relative to the current time 
point, and compute their average Q value. For each element on the history list, we 
compute the sequence match criteria with the current time point, M(i, T), where 

M(i,j) = S(i,j) + M(i -l,j -1) if S(i,j) > 0 and i> 0 and j > 0 

o otherwise. 

We define Sci, j) to be 1 if o[i] = o[j] or a[i] = a(j], 2 if both are equal, and 
o otherwise. Using a superscript in parentheses to denote the action index of a 
Q-value, we then compute 

T 

Q(a)[T] = (1/ I<) L v(a)[i]q[t] , (1) 
i=O 

where v(a*)[i] indicates whether the history tuple at time step i votes when comput
ing the Q-value of a new action a"': v(a*)[i] is set to 1 when a[i] = a'" and M( i-I, T) 
is among the I< largest match values for all k which have a[k] = a"', otherwise it is 
set to O. Given Q values for each action the optimal policy is simply 

lI"[T] = arg maxQ(a)[T] . 
aEA 

(2) 

The new action a[T + 1] is chosen either according to this policy or based on an 
exploration strategy. In either case, the action is executed yielding an observation 
and reward, and a new tuple added to the history. The new Q-value is set to be 
the Q value of the chosen action, q[T + 1] = Q(a[T+1]) [T]. The update step of Q 
learning is then computed, evaluating 

U[T + 1] = maxQ(a)[T + 1] , 
aEA 

q[i] +- (1 - fJ)q[i] + fJ(r[i] + ')'U[T + 1]) , 
for each i such that v(a[T+l])[i] = l. 

(3) 

(4) 
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Figure 2: (a) Multiple model Q-learning: one Q-learning agent for each target 
gesture to be recognized, with coupled observation and action but separate reward 
and Q-value. (b) Results on recognition task with 8 gesture targets; graph shows 
error rate after convergence plotted as a function of number of nearest neighbors 
used in learning algorithm. 

4 MULTIPLE MODEL Q-LEARNING 

In general, we have found the simple, instance-based hidden state reinforcement 
learning described above to be an effective way to perform action selection for 
foveation when the task is recognition of a single object from a set of distractors . 
However, we did not find that this type of system performed well when the AG R 
task was extended to include more than one target gesture . When multiple accept 
actions were added to enumerate the different targets, we were not able to find 
exploration strategies that would converge in reasonable time. 

This is not unexpected, since the addition of multiple causes of positive reward 
makes the Q-value space considerably more complex. To remedy this problem, we 
propose a multiple model Q-learning system. In a multiple model approach to the 
AG R problem, separate learning agents model the task from each targets perspec
tive. Conceptually, a separate Q-learning agent exists for each target, maintains it's 
own Q-value and history structure, and is coupled to the other agents via shared 
observations. Since we can interpret the Q-value of an individual AGR agent as a 
confidence value that its target is present, we can mediate among the actions pre
dicted by the different agents by selecting the action from the agent with highest 
Q-value (Figure 2). 

Formally, in our multiple model Q-learning system all agents share the same ob
servation and selected action , but have different reward and Q-values. Thus they 
can be considered a single Q-learning system, but with vector reward and Q-values. 
Our multiple model learning system is thus obtained by rewriting Eqs. (1)-(4) with 
vector q[t] and r[t]. Using a subscript j to indicate the target index, we have 

T 

Q;a)[T] = (1/ K) L v(a)[i]qj [t] , 
i=O 

1T[11 = arg max (maxQ;a)[T]) . 
aEA J 

(5) 

Rewards are computed with: if a[T] = accept then rj [T] = R(j, T) else rj [T] = 0; 
R(j, T) = 1 if gesture j was present at time T, else R(j, T) = -(Y. Further, 

Uj [T + 1] = maxQ(a)[T + 1] , (6) 
aEA ] 
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qj[i] f- (1- ,8)qj[i] + ,8(rj[i] + /'Uj[T+ 1]) Vi s.t. v(a[T+1])[i] = 1 . (7) 

Note that our sequence match criteria, unlike that in [10], does not depend on r[t]; 
this allows considerable computational savings in the multiple model system since 
v(a) need not depend on j. 

We ran the multiple model learning system on the AGR task using 8 targets, with 
,8 = 0.5, /' = 0.5, Q; = 10. Results summed over 2500 trials are shown in Figure 2(b), 
with classification error plotted against the number of nearest neighbors used in the 
NSM algorithm. The error rate shown is after convergence; we ran the algorithm 
with a period of deterministic exploration before following the optimal policy. (The 
system deterministically explored each action/accept pair.) As can be seen from 
the graph, for any non-degenerate value of K reasonable performance was obtained; 
for K > 2, the system performed almost perfectly. 
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