
Improving Elevator Performance Using 
Reinforcement Learning 

Robert H. Crites 
Computer Science Department 

University of Massachusetts 
Amherst, MA 01003-4610 

critesGcs.umass.edu 

Andrew G. Barto 
Computer Science Department 

University of Massachusetts 
Amherst, MA 01003-4610 

bartoGcs.umass.edu 

Abstract 

This paper describes the application of reinforcement learning (RL) 
to the difficult real world problem of elevator dispatching. The el
evator domain poses a combination of challenges not seen in most 
RL research to date. Elevator systems operate in continuous state 
spaces and in continuous time as discrete event dynamic systems. 
Their states are not fully observable and they are nonstationary 
due to changing passenger arrival rates. In addition, we use a team 
of RL agents, each of which is responsible for controlling one ele
vator car. The team receives a global reinforcement signal which 
appears noisy to each agent due to the effects of the actions of the 
other agents, the random nature of the arrivals and the incomplete 
observation of the state. In spite of these complications, we show 
results that in simulation surpass the best of the heuristic elevator 
control algorithms of which we are aware. These results demon
strate the power of RL on a very large scale stochastic dynamic 
optimization problem of practical utility. 

1 INTRODUCTION 

Recent algorithmic and theoretical advances in reinforcement learning (RL) have 
attracted widespread interest. RL algorithms have appeared that approximate dy
namic programming (DP) on an incremental basis. Unlike traditional DP algo
rithms, these algorithms can perform with or without models of the system, and 
they can be used online as well as offline, focusing computation on areas of state 
space that are likely to be visited during actual control. On very large problems, 
they can provide computationally tractable ways of approximating DP. An exam
ple of this is Tesauro's TD-Gammon system (Tesauro, 1992j 1994; 1995), which 
used RL techniques to learn to play strong masters level backgammon. Even the 



1018 R. H. CR~.A.G. BARTO 

best human experts make poor teachers for this class of problems since they do not 
always know the best actions. Even if they did, the state space is so large that 
it would be difficult for experts to provide sufficient training data. RL algorithms 
are naturally suited to this class of problems, since they learn on the basis of their 
own experience. This paper describes the application of RL to elevator dispatching, 
another problem where classical DP is completely intractable. The elevator domain 
poses a number of difficulties that were not present in backgammon. In spite of 
these complications, we show results that surpass the best of the heuristic elevator 
control algorithms of which we are aware. The following sections describe the ele
vator dispatching domain, the RL algorithm and neural network architectures that 
were used, the results, and some conclusions. 

2 THE ELEVATOR SYSTEM 

The particular elevator system we examine is a simulated 10-story building with 
4 elevator cars (Lewis, 1991; Bao et al, 1994). Passenger arrivals at each floor are 
assumed to be Poisson, with arrival rates that vary during the course of the day. 
Our simulations use a traffic profile (Bao et al, 1994) which dictates arrival rates for 
every 5-minute interval during a typical afternoon down-peak rush hour. Table 1 
shows the mean number of passengers arriving at each floor (2-10) during each 
5-minute interval who are headed for the lobby. In addition, there is inter-floor 
traffic which varies from 0% to 10% of the traffic to the lobby. 

Table 1: The Down-Peak Traffic Profile 

The system dynamics are approximated by the following parameters: 

• Floor time (the time to move one floor at the maximum speed): 1.45 secs. 

• Stop time (the time needed to decelerate, open and close the doors, and 
accelerate again): 7.19 secs. 

• Turn time (the time needed for a stopped car to change direction): 1 sec. 

• Load time (the time for one passenger to enter or exit a car): random 
variable from a 20th order truncated Erlang distribution with a range from 
0.6 to 6.0 secs and a mean of 1 sec. 

• Car capacity: 20 passengers. 

The state space is continuous because it includes the elapsed times since any hall 
calls were registered. Even if these real values are approximated as binary values, 
the size of the state space is still immense. Its components include 218 possible 
combinations of the 18 hall call buttons (up and down buttons at each landing 
except the top and bottom), 240 possible combinations of the 40 car buttons, and 
184 possible combinations of the positions and directions of the cars (rounding off 
to the nearest floor). Other parts of the state are not fully observable, for example, 
the desired destinations of the passengers waiting at each floor. Ignoring everything 
except the configuration of the hall and car call buttons and the approximate posi
tion and direction of the cars, we obtain an extremely conservative estimate of the 
size of a discrete approximation to the continuous state space: 



Improving Elevator Performance Using Reinforcement Learning 1019 

Each car has a small set of primitive actions. Ifit is stopped at a floor, it must either 
"move up" or "move down". If it is in motion between floors, it must either "stop 
at the next floor" or "continue past the next floor". Due to passenger expectations, 
there are two constraints on these actions: a car cannot pass a floor if a passenger 
wants to get off there and cannot turn until it has serviced all the car buttons in its 
present direction. We have added three additional action constraints in an attempt 
to build in some primitive prior knowledge: a car cannot stop at a floor unless 
someone wants to get on or off there, it cannot stop to pick up passengers at a floor 
if another car is already stopped there, and given a choice between moving up and 
down, it should prefer to move up (since the down-peak traffic tends to push the 
cars toward the bottom of the building). Because of this last constraint, the only 
real choices left to each car are the stop and continue actions. The actions of the 
elevator cars are executed asynchronously since they may take different amounts of 
time to complete. 

The performance objectives of an elevator system can be defined in many ways. One 
possible objective is to minimize the average wait time, which is the time between 
the arrival of a passenger and his entry into a car. Another possible objective is 
to minimize the average 6y6tem time, which is the sum of the wait time and the 
travel time. A third possible objective is to minimize the percentage of passengers 
that wait longer than some dissatisfaction threshold (usually 60 seconds). Another 
common objective is to minimize the sum of 6quared wait times. We chose this 
latter performance objective since it tends to keep the wait times low while also 
encouraging fair service. 

3 THE ALGORITHM AND NETWORK 
ARCHITECTURE 

Elevator systems can be modeled as ducrete event systems, where significant events 
(such as passenger arrivals) occur at discrete times, but the amount oftime between 
events is a real-valued variable. In such systems, the constant discount factor 'Y 
used in most discrete-time reinforcement learning algorithms is inadequate. This 
problem can be approached using a variable discount factor that depends on the 
amount of time between events (Bradtke & Duff, 1995). In this case, returns are 
defined as integrals rather than as infinite sums, as follows: 

becomes 

where rt is the immediate cost at discrete time t, r.,. is the instantaneous cost at 
continuous time T (e.g., the sum of the squared wait times of all waiting passengers), 
and {3 controls the rate of exponential decay. 

Calculating reinforcements here poses a problem in that it seems to require knowl
edge of the waiting times of all waiting passengers. There are two ways of dealing 
with this problem. The simulator knows how long each passenger has been waiting. 
It could use this information to determine what could be called omnucient rein
forcements. The other possibility is to use only information that would be available 
to a real system online. Such online reinforcements assume only that the waiting 
time of the first passenger in each queue is known (which is the elapsed button 
time). If the Poisson arrival rate A for each queue is estimated as the reciprocal of 
the last inter-button time for that queue, the Gamma distribution can be used to 
estimate the arrival times of subsequent passengers. The time until the nth. subse
quent arrival follows the Gamma distribution r(n, f). For each queue, subsequent 



1020 R. H. CRITES, A. G. BARTO 

arrivals will generate the following expected penalties during the first b seconds after 
the hall button has been pressed: 

00 rb L Jo (prob nth arrival occurs at time r) . (penalty given arrival at time r) dr 
n=l 0 

This integral can be solved by parts to yield expected penalties. We found that 
using online reinforcements actually produced somewhat better results than using 
omniscient reinforcements, presumably because the algorithm was trying to learn 
average values anyway. 

Because elevator system events occur randomly in continuous time, the branching 
factor is effectively infinite, which complicates the use of algorithms that require 
explicit lookahead. Therefore, we employed a team of discrete-event Q-Iearning 
agents, where each agent is responsible for controlling one elevator car. Q(:z:, a) 
is defined as the expected infinite discounted return obtained by taking action a 
in state :z: and then following an optimal policy (Watkins, 1989). Because of the 
vast number of states, the Q-values are stored in feedforward neural networks. The 
networks receive some state information as input, and produce Q-value estimates 
as output. We have tested two architectures. In the parallel architecture, the agents 
share a single network, allowing them to learn from each other's experiences and 
forcing them to learn identical policies. In the fully decentralized architecture, the 
agents have their own networks, allowing them to specialize their control policies. 
In either case, none of the agents have explicit access to the actions of the other 
agents. Cooperation has to be learned indirectly via the global reinforcement signal. 
Each agent faces added stochasticity and nonstationarity because its environment 
contains other learning agents. Other work on team Q-Iearning is described in 
(Markey, 1994). 

The algorithm calls for each car to select its actions probabilistic ally using the 
Boltzmann distribution over its Q-value estimates, where the temperature is low
ered gradually during training. After every decision, error backpropagation is used 
to train the car's estimate of Q(:z:, a) toward the following target output: 

where action a is taken by the car from state :z: at time tx , the next decision by 
that car is required from state y at time ty, and TT and (3 are defined as above. 
e-tJ(tv-t.) acts as a variable discount factor that depends on the amount of time 
between events. The learning rate parameter was set to 0.01 or 0.001 and {3 was set 
to 0.01 in the experiments described in this paper. 

After considerable experimentation, our best results were obtained using networks 
for pure down traffic with 47 input units, 20 hidden sigmoid units, and two linear 
output units (one for each action value). The input units are as follows: 

• 18 units: Two units encode information about each of the nine down hall 
buttons. A real-valued unit encodes the elapsed time if the button has 
been pushed and a binary unit is on if the button has not been pushed. 



Improving Elevator Performance Using Reinforcement Learning 1021 

• 16 units: Each of these units represents a possible location and direction 
for the car whose decision is required. Exactly one of these units will be on 
at any given time. 

• 10 units: These units each represent one of the 10 floors where the other cars 
may be located. Each car has a "footprint" that depends on its direction 
and speed. For example, a stopped car causes activation only on the unit 
corresponding to its current floor, but a moving car causes activation on 
several units corresponding to the floors it is approachmg, with the highest 
activations on the closest floors. 

• 1 unit: This unit is on if the car whose decision is required is at the highest 
floor with a waiting passenger. 

• 1 unit: This unit is on if the car whose decision is required is at the floor 
with the passenger that has been waiting for the longest amount of time. 

• 1 unit: The bias unit is always on. 

4 RESULTS 

Since an optimal policy for the elevator dispatching problem is unknown, we mea
sured the performance of our algorithm against other heuristic algorithms, including 
the best of which we were aware. The algorithms were: SECTOR, a sector-based 
algorithm similar to what is used in many actual elevator systems; DLB, Dynamic 
Load Balancing, attempts to equalize the load of all cars; HUFF, Highest Unan
swered Floor First, gives priority to the highest floor with people waiting; LQF, 
Longest Queue First, gives priority to the queue with the person who has been 
waiting for the longest amount of time; FIM, Finite Intervisit Minimization, a re
ceding horizon controller that searches the space of admissible car assignments to 
minimize a load function; ESA, Empty the System Algorithm, a receding horizon 
controller that searches for the fastest way to "empty the system" assuming no new 
passenger arrivals. ESA uses queue length information that would not be available 
in a real elevator system. ESA/nq is a version of ESA that uses arrival rate informa
tion to estimate the queue lengths. For more details, see (Bao et al, 1994). These 
receding horizon controllers are very sophisticated, but also very computationally 
intensive, such that they would be difficult to implement in real time. RLp and 
RLd denote the RL controllers, parallel and decentralized. The RL controllers were 
each trained on 60,000 hours of simulated elevator time, which took four days on a 
100 MIPS workstation. The results are averaged over 30 hours of simulated elevator 
time. Table 2 shows the results for the traffic profile with down traffic only. 

Algorithm I AvgWait I SquaredWait I SystemTime I Percent>60 secs I 
SECTOR 21.4 674 47.7 1.12 

DLB 19.4 658 53.2 2.74 
BASIC HUFF 19.9 580 47.2 0.76 

LQF 19.1 534 46.6 0.89 
HUFF 16.8 396 48.6 0.16 
FIM 16.0 359 47.9 0.11 

ESA/nq 15.8 358 47.7 0.12 
ESA 15.1 338 47.1 0.25 
RLp 14.8 320 41.8 0.09 
RLd 14.7 313 41.7 0.07 

Table 2: Results for Down-Peak Profile with Down Traffic Only 



1022 R.H.C~.A.G. BARTO 

Table 3 shows the results for the down-peak traffic profile with up and down traffic, 
including an average of 2 up passengers per minute at the lobby. The algorithm 
was trained on down-only traffic, yet it generalizes well when up traffic is added 
and upward moving cars are forced to stop for any upward hall calls. 

Algorithm I AvgWait I Squared wait I SystemTime I Percent>60 secs I 
SECTOR 27.3 1252 54.8 9.24 

DLB 21.7 826 54.4 4.74 
BASIC HUFF 22.0 756 51.1 3.46 

LQF 21.9 732 50.7 2.87 
HU ... ·F 19.6 608 50.5 1.99 
ESA 18.0 524 50.0 1.56 
FIM 17.9 476 48.9 0.50 
RLp 16.9 476 42.7 1.53 
RLd 16.9 468 42.7 1.40 

Table 3: Results for Down-Peak Profile with Up and Down Traffic 

Table 4 shows the results for the down-peak traffic profile with up and down traffic, 
including an average of 4 up passengers per minute at the lobby. This time there is 
twice as much up traffic, and the RL agents generalize extremely well to this new 
situation. 

Algorithm I AvgWait I SquaredWait I SystemTime I Percent>60 secs I 
SECTOR 30.3 1643 59.5 13.50 

HUFF 22.8 884 55.3 5.10 
DLB 22.6 880 55.8 5.18 
LQF 23.5 877 53.5 4.92 

BASIC HUFF 23.2 875 54.7 4.94 
FIM 20.8 685 53.4 3.10 
ESA 20.1 667 52.3 3.12 
RLd 18.8 593 45.4 2.40 
RLp 18.6 585 45.7 2.49 

Table 4: Results for Down-Peak Profile with Twice as Much Up Traffic 

One can see that both the RL systems achieved very good performance, most no
tably as measured by system time (the sum of the wait and travel time), a measure 
that was not directly being minimized. Surprisingly, the decentralized RL system 
was able to achieve as good a level of performance as the parallel RL system. Bet
ter performance with nonstationary traffic profiles may be obtainable by providing 
the agents with information about the current traffic context as part of their input 
representation. We expect that an additional advantage of RL over heuristic con
trollers may be in buildings with less homogeneous arrival rates at each floor, where 
RL can adapt to idiosyncracies in their individual traffic patterns. 

5 CONCLUSIONS 

These results demonstrate the utility of RL on a very large scale dynamic optimiza
tion problem. By focusing computation onto the states visited during simulated 
trajectories, RL avoids the need of conventional DP algorithms to exhaustively 



Improving Elevator Performance Using Reinforcement Learning 1023 

sweep the state set. By storing information in artificial neural networks, it avoids 
the need to maintain large lookup tables. To achieve the above results, each RL 
system experienced 60,000 hours of simulated elevator time, which took four days 
of computer time on a 100 MIPS processor. Although this is a considerable amount 
of computation, it is negligible compared to what any conventional DP algorithm 
would require. The results also suggest that approaches to decentralized control 
using RL have considerable promise. Future research on the elevator dispatching 
problem will investigate other traffic profiles and further explore the parallel and 
decentralized RL architectures. 

Acknowledgements 

We thank John McNulty, Christ os Cassandras, Asif Gandhi, Dave Pepyne, Kevin 
Markey, Victor Lesser, Rod Grupen, Rich Sutton, Steve Bradtke, and the ANW 
group for assistance with the simulator and for helpful discussions. This research 
was supported by the Air Force Office of Scientific Research under grant F49620-
93-1-0269. 

References 

G. Bao, C. G. Cassandras, T. E. Djaferis, A. D. Gandhi, and D. P. Looze. (1994) 
Elevator Di,patcher, for Down Peale Traffic. Technical Report, ECE Department, 
University of Massachusetts, Amherst, MA. 

S. J. Bradtke and M. O. Duff. (1995) Reinforcement Learning Methods for 
Continuous-Time Markov Decision Problems. In: G. Tesauro, D. S. Touretzky 
and T. K. Leen, eds., Advance, in Neural Information Procelling Sy,tem, 7, MIT 
Press, Cambridge, MA. 

J. Lewis. (1991) A Dynamic Load Balancing Approach to the Control of Multuerver 
Polling Sy,tem, with Applicationl to Elevator Syltem Dupatching. PhD thesis, 
University of Massachusetts, Amherst, MA. 

K. L. Markey. (1994) Efficient Learning of Multiple Degree-of-Freedom Control 
Problems with Quasi-independent Q-agents. In: M. C. Mozer, P. Smolensky, 
D. S. Touretzky, J. L. Elman and A. S. Weigend, eds., Proceeding' of the 1993 
Connectionilt Modell Summer SchooL Erlbaum Associates, Hillsdale, NJ. 

G. Tesauro. (1992) Practical Issues in Temporal Difference Learning. Machine 
Learning 8:257-277. 

G. Tesauro. (1994) TO-Gammon, a Self-Teaching Backgammon Program, Achieves 
Master-Level Play. Neural Computation 6:215-219. 

G. Tesauro. (1995) Temporal Difference Learning and TD-Gammon. Communica
tion, of the ACM 38:58-68. 

C. J. C. H. Watkins. (1989) Learning from Delayed Reward,. PhD thesis, Cam
bridge University. 


