
Using the Future to "Sort Out" the
Present: Rankprop and Multitask

Learning for Medical Risk Evaluation

Rich Caruana, Shumeet Baluja, and Tom Mitchell
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

(caruana, baluja, mitchell)@cs.cmu.edu

Abstract

A patient visits the doctor; the doctor reviews the patient's history,
asks questions, makes basic measurements (blood pressure, .. .), and
prescribes tests or treatment . The prescribed course of action is
based on an assessment of patient risk-patients at higher risk are
given more and faster attention. It is also sequential- it is too
expensive to immediately order all tests which might later be of
value . This paper presents two methods that together improve
the accuracy of backprop nets on a pneumonia risk assessment
problem by 10-50%. Rankprop improves on backpropagation with
sum of squares error in ranking patients by risk. Multitask learning
takes advantage of future lab tests available in the training set, but
not available in practice when predictions must be made. Both
methods are broadly applicable.

1 Background

There are 3,000,000 cases of pneumonia each year in the U.S., 900,000 of which
are admitted to the hospital for treatment and testing. Most pneumonia patients
recover given appropriate treatment, and many can be treated effectively without
hospitalization. Nonetheless, pneumonia is serious: 100,000 of those hospitalized
for pneumonia die from it, and many more are at elevated risk if not hospitalized.

1.1 The Problem

A primary goal of medical decision making is to accurately, swiftly, and econom­
ically identify patients at high risk from diseases like pneumonia so they may be
hospitalized to receive aggressive testing and treatment; patients at low risk may be
more comfortably, safely, and economically treated at home. Note that the diagno-

960 R. CARUANA, S. BALUJA, T. MITCHELL

sis of pneumonia has already been made; the goal is not to determine the illness, but
how much risk the illness poses to the patient. Some of the most useful tests for do­
ing this require hospitalization and will be available only if preliminary assessment
indicates it is warranted. Low risk patients can safely be treated as outpatients and
can often be identified using measurements made prior to admission .

The problem considered in this paper is to learn to rank pneumonia patients ac­
cording to their probability of mortality. We present two learning methods that
combined outperform standard backpropagation by 10-50% in identifying groups
of patients with least mortality risk . These methods are applicable to domains
where the goal is to rank instances according to a probability function and where
useful attributes do not become available until after the prediction must be made.
In addition to medical decision making, this class includes problems as diverse as
investment analysis in financial markets and autonomous vehicle navigation .

1.2 The Pneumonia Database

The Medis Pneumonia Database [6] contains 14,199 pneumonia cases collected from
78 hospitals in 1989. Each patient in the database was diagnosed with pneumonia
and hospitalized. 65 measurements are available for most patients. These include
30 basic measurements typically acquired prior to hospitalization such as age, sex,
and pulse, and 35 lab results such as blood counts or gases not available until after
hospitalization. The database indicates how long each patient was hospitalized and
whether the patient lived or died. 1,542 (10.9%) of the patients died.

1.3 The Performance Criterion

The Medis database indicates which patients lived or died. The most useful decision
aid for this problem would predict which patients will live or die. But this is too
difficult. In practice, the best that can be achieved is to estimate a probability
of death (POD) from the observed symptoms. In fact, it is sufficient to learn to
rank patients by POD so lower risk patients can be discriminated from higher risk
patients. The patients at least risk may then be considered for outpatient care.

The performance criterion used by others working with the Medis database [4] is the
accuracy with which one can select a prespecified fraction of the patient population
that do not die. For example, given a population of 10,000 patients, find the 20%
of this population at least risk. To do this we learn a risk model and a threshold
for this model that allows 20% of the population (2000 patients) to fall below it. If
30 of the 2000 patients below this threshold died, the error rate is 30/2000 = 0.015.
We say that the error rate for FOP 0.20 is 0.015 for this model ("FOP" stands for
fraction of population). In this paper we consider FOPs 0.1, 0.2, 0.3, 0.4, and 0.5 .
Our goal is to learn models and model thresholds, such that the error rate at each
FOP is minimized. Models with acceptably low error rates might then be employed
to help determine which patients do not require hospitalization.

2 Methodology

The Medis database is unusually large, with over 14K training patterns. Because we
are interested in developing methods that will be effective in other domains where
databases of this size are not available, we perform our experiments using small
training sets randomly drawn from the 14K patterns and use the remaining patterns
as test sets. For each method we run ten trials. For each trial we randomly sample
2K patterns from the 14K pool for training. The 2K training sample is further split
into a 1K backprop set used to train the net and a 1K halting set used to determine

Rankprop and Multitask Learning for Medical Risk Evaluation 961

when to halt training.! Once the network is trained, we run the 1K halt set through
the model again to find the threshold that passes 10%,20%,30%,40%, and 50% of
the halt set. The performance ofthe model is evaluated on the 12K unused patterns
by determining how many of the cases that fall below threshold in this test set die.
This is the error rate for that model at that FOP.

3 The Traditional Approach: SSE on 0/1 Targets

Sections 3-5 present three neural net approaches to pneumonia risk prediction. This
section presents the standard approach: using backpropagation on sum of squares
errors (SSE) with 0=lives/1=dies to predict mortality. This works well if early
stopping is used to prevent overfitting. Section 4 presents rank prop (SSE on ranks
instead of 0/1 targets). Rankprop, which learns to rank patients by risk instead
of directly predicting mortality, works better. Section 5 uses multitask learning
(MTL) to benefit from tests in the database that in practice will not be available
until after deciding to admit the patient. Rankprop with MTL works even better.

The straightforward approach to this problem is to use backprop to train a net to
learn to predict which patients live or die, and then use the real-valued predictions of
this net to sort patients by risk. This net has 30 inputs, 1 for each of the observed
patient measurements, a hidden layer with 8 units2 , and a single output trained
with O=lived, 1=died.3 Given an infinite training set, a net trained this way should
learn to predict the probability of death for each patient, not which patients live or
die. In the real world, however, where we rarely have an infinite number of training
cases, a net will overtrain and begin to learn a very nonlinear function that outputs
values near 0/1 for cases in the training set, but which does not generalize well. In
this domain it is critical to use early stopping to halt training before this happens .

Table 1 shows the error rates of nets trained with SSE on 0/1 targets for the five
FOPs. Each entry is the mean of ten trials. The first entry in the table indicates
that on average, in the 10% of the test population predicted by the nets to be at
least risk, 1.4% died. We do not know the best achievable error rates for this data.

Table 1: Error Rates of SSE on 0/1 Targets

FOP
Error Rate

4 Using Rankprop to Rank Cases by Risk

Because the goal is to find the fraction of the population least likely to die, it is
sufficient just to learn to rank patients by risk. Rankprop learns to rank patients
without learning to predict mortality. "Rankprop" is short for "backpropagation
using sum of squares errors on estimated ranks". The basic idea is to sort the
training set using the target values, scale the ranks from this sort (we scale uniformly
to [0.25,0.75] with sigmoid output units), and use the scaled ranks as target values
for standard backprop with SSE instead of the 0/1 values in the database.

lperformance at different FOPs sometimes peaks at different epochs. We halt training
separately for each FOP in all the experiments to insure this does not confound results.

2To make comparisons between methods fair, we first found hidden layer sizes and
learning parameters that performed well for each method.

3Different representations such as 0.15/0.85 and different error metrics such as cross
entropy did not perform better than SSE on 0/1 targets.

962 R. CARUANA, S. BALUJA, T. MITCHELL

Ideally, we'd rank the training set by the true probabilities of death. Unfortunately,
all we know is which patients lived or died. In the Medis database, 89% of the target
values are O's and 11% are l's. There are many possible sorts consistent with these
values. Which sort should backprop try to fit? It is the large number of possible
sorts of the training set that makes backpropagating ranks challenging. Rankprop
solves this problem by using the net model as it is being learned to order the training
set when target values are tied. In this database, where there are many ties because
there are only two target values, finding a proper ranking of the training set is a
serious problem. Rankprop learns to adjust the target ranks of the training set at
the same time it is learning to predict ranks from that training set.

How does rankprop do this? Rankprop alternates between rank passes and backprop
passes. On the rank pass it records the output of the net for each training pattern.
It then sorts the training patterns using the target values (0 or 1 in the Medis
database), but using the network's predictions for each pattern as a secondary
sort key to break ties. The basic idea is to find the legal rank of the target values (0
or 1) maximally consistent with the ranks the current model predicts . This closest
match ranking of the target values is then used to define the target ranks used on
the next backprop pass through the training set. Rankprop's pseudo code is:

foreach epoch do {
foreach pattern do {

network_output[pattern] = forward_pass(pattern)}
target_rank = sort_and_scale_patterns(target_value, network_output)
foreach pattern do {

backprop(target_rank[pattern] - network_output[pattern])}}

where "sorkand..scale_patterns" sorts and ranks the training patterns using the sort
keys specified in its arguments , the second being used to break ties in the first.

Table 2 shows the mean rankprop performance using nets with 8 hidden units.
The bottom row shows improvements over SSE on 0/1 targets. All differences are
statistically significant. See Section 7.1 for discussion of why rank prop works better.

Table 2: Error Rates of Rankprop and Improvement Over Standard Backprop

FOP
Error Rate

% Change

5 Learning From the Future with Multitask Learning

The Medis database contains results from 36 lab tests that will be available only
after patients are hospitalized. Unfortunately, these results will not be available
when the model is used because the patients will not yet have been admitted . Mul­
titask learning (MTL) improves generalization by having a learner simultaneously
learn sets of related tasks with a shared representation; what is learned for each
task might benefit other tasks. In this application , we use MTL to benefit from the
future lab results. The extra lab values are used as extra backprop outputs as shown
in Figure 1. The extra outputs bias the shared hidden layer towards representations
that better capture important features of the domain. See [2][3][9] for details about
MTL and [1] for other ways of using extra outputs to bias learning.

The MTL net has 64 hidden units . Table 3 shows the mean performance of ten runs
of MTL with rankprop. The bottom row shows the improvement over rankprop

Rankprop and Multitask Learning for Medical Risk Evaluation

RANKPROP
OUTPUT

~--~ Mortality He matocnt While Blood Pn t.a.<i1i lUm -- FUT\JRE LABS
Rank Cell ("oun l

1 1 1 1

~
~~o~

OUTPUT LAYER

SHAREDHIDOEN LAYER

INPUT LAYER

INPUTS

Figure 1: Using Future Lab Results as Extra Outputs To Bias Learning

963

alone. Although MTL lowers error at each FOP, only the differences at FOP = 0.3,
0.4, and 0.5 are statistically significant with ten trials. Feature nets [7], a competing
approach that trains nets to predict the missing future labs and uses the predictions
as extra net inputs does T}ot yield benefits comparable to MTL on this problem.

Table 3: Error Rates of Rankprop+MTL and Improvement Over Rankprop Alone

FOP
Error Rate

% Change

6 Comparison of Results

Table 4 compares the performance of backprop using SSE on 0/1 targets with the
combination of rankprop and multitask learning. On average, Rankprop+MTL re­
duces error more than 25%. This improvement is not easy to achieve-experiments
with other learning methods such as Bayes Nets, Hierarchical Mixtures of Experts,
and K-Nearest Neighbor (run not by us , but by experts in their use) indicate SSE
on 0/1 targets is an excellent performer on this domain[4].

Table 4: Comparison Between SSE on 0/1 Targets and Rankprop+MTL

FOP 0.1 0.2 0.3 0.4 0.5
SSE on 0/1 .0140 .0190 .0252 .0340 .0421

Rankprop+ MTL .0074 .0127 .0197 .0269 .0364

% Change -47.1% I -33.2% I -21.8% I -20.9% I -13.5%

7 Discussion

7.1 Why Does Rankprop Work?

We are given data from a target function f (x). Suppose the goal is not to learn a
model of f(x), but to learn to sort patterns by f(x). Must we learn a model of f(x)
and use its predictions for sorting? No. It suffices to learn a function g(x) such that
for all Xl , X2, [g(xd::; g(X2)]- [J(xd::; f(X2)]. There can be many such functions
g(x) for a given f(x), and some of these may be easier to learn than f(x).

.

964 R. CARUANA, S. BALUJA, T. MITCHELL

Consider the probability function in Figure 2.1 that assigns to each x the probability
p = f(x) that the outcome is 1; with probability 1 - p the outcome is O. Figure
2.2 shows a training set sampled from this distribution. Where the probability is
low, there are many O's. Where the probability is high , there are many l 's. Where
the probability is near 0.5, there are O's and 1 'so This region causes problems for
backprop using SSE on 0/1 targets: similar inputs are mapped to dissimilar targets .

.8

i 08 I" 111111 111111 I 000 0 011001010110001101111' 2
f ••

i :: llllllllllll t

0 2 0... 0.6 08 02 0 4 06 08 0 2 04 06 0 8

Figure 2: SSE on 0/1 Targets and on Ranks for a Simple Probability Function

Backprop learns a very nonlinear function if trained on Figure 2.2. This is unfor­
tunate: Figure 2.1 is smooth and maps similar inputs to similar outputs . If the
goal is to learn to rank the data, we can learn a simpler , less nonlinear function
instead. There exists a ranking of the training data such that if the ranks are used
as backprop target values, the resulting function is less nonlinear than the original
target function. Figure 2.3 shows these target rank values. Similar input patterns
have more similar rank target values than the original target values .

Rankprop tries to learn simple functions that directly support ranking. One diffi­
culty with this is that rankprop must learn a ranking of the training data while also
training the model to predict ranks . We do not yet know under what conditions this
parallel search will converge. We conjecture that when rankprop does converge, it
will often be to simpler models than it would have learned from the original target
values (0/1 in Medis), and that these simpler models will often generalize better.

7.2 Other Applications of Rankprop and Learning From the Future

Rankprop is applicable wherever a relative assessment is more useful or more learn­
able than an absolute one. One application is domains where quantitative mea­
surements are not available, but relative ones are[8]. For example, a game player
might not be able to evaluate moves quantitatively , but might excel at relative
move evaluation[10]. Another application is where the goal is to learn to order data
drawn from a probability distribution, as in medical risk prediction . But it can also
be applied wherever the goal is to order data. For example, in information filtering
it is usually important to present more useful information to the user first, not to
predict how important each is[5].

MTL is a general method for using related tasks. Here the extra MTL tasks are
future measurements. Future measurements are available in many offline learning
problems where there is opportunity to collect the measurements for the training
set. For example, a robot or autonomous vehicle can more accurately measure the
size, location, and identity of objects when it passes near them-road stripes can be
detected reliably as a vehicle passes alongside them, but detecting them far ahead of
a vehicle is hard. Since driving brings future road into the car's present, stripes can
be measured accurately when passed and used as extra features in the training set .
They can't be used as inputs for learning to drive because they will not be available
until too late when driving. As MTL outputs , though, they provide information

Rankprop and Multitask Learning for Medical Risk Evaluation 965

that improves learning without requiring they be available at run time[2] .

8 Summary

This paper presents two methods that can improve generalization on a broad class
of problems. This class includes identifying low risk pneumonia patients. The
first method, rankprop , tries to learn simple models that support ranking future
cases while simultaneously learning to rank the training set. The second, multitask
learning, uses lab tests available only during training, as additional target values to
bias learning towards a more predictive hidden layer. Experiments using a database
of pneumonia patients indicate that together these methods outperform standard
backpropagation by 10-50%. Rankprop and MTL are applicable to a large class of
problems in which the goal is to learn a relative ranking over the instance space,
and where the training data includes features that will not be available at run
time. Such problems include identifying higher-risk medical patients as early as
possible, identifying lower-risk financial investments, and visual analysis of scenes
that become easier to analyze as they are approached in the future.

Acknowledgements

We thank Greg Cooper, Michael Fine, and other members of the Pitt/CMU Cost-Effective
Health Care group for help with the Medis Database. This work was supported by ARPA
grant F33615-93-1-1330, NSF grant BES-9315428, Agency for Health Care Policy and
Research grant HS06468, and an NSF Graduate Student Fellowship (Baluja) .

References

[1] Y.S. Abu-Mostafa, "Learning From Hints in Neural Networks," Journal of Complexity
6:2, pp. 192-198, 1989.

[2] R. Caruana, "Learning Many Related Tasks at the Same Time With Backpropaga­
tion," Advances in Neural Information Processing Systems 7, pp. 656-664, 1995.

[3] R. Caruana, "Multitask Learning: A Knowledge-Based Source of Inductive Bias,"
Proceedings of the 10th International Conference on Machine Learning, pp. 41-48,
1993.

[4] G. Cooper, et al., "An Evaluation of Machine Learning Methods for Predicting Pneu­
monia Mortality," submitted to AI in Medicine, 1995.

[5] K. Lang, "NewsWeeder: Learning to Filter News," Proceedings of the 12th Interna­
tional Conference on Machine Learning, pp. 331-339, 1995.

[6] M. Fine, D. Singer, B. Hanusa, J . Lave, and W. Kapoor, "Validation of a Pneumonia
Prognostic Index Using the MedisGroups Comparative Hospital Database," American
Journal of Medicine, 94 1993.

[7] I. Davis and A. Stentz, "Sensor Fusion For Autonomous Outdoor Navigation Using
Neural Networks," Proceedings of IEEE 's Intelligent Robots and Systems Conference,
1995.

[8] G.T. Hsu, and R. Simmons, "Learning Footfall Evaluation for a Walking Robot,"
Proceedings of the 8th International Conference on Machine Learning, pp. 303-307,
1991.

[9] S.C. Suddarth and A.D.C. Holden, "Symbolic-neural Systems and the Use of Hints for
Developing Complex Systems," International Journal of Man-Machine Studies 35:3,
pp. 291-311, 1991.

[10] P. Utgoff and S. Saxena, "Learning a Preference Predicate," Proceedings of the 4th
International Conference on Machine Learning, pp. 115-121, 1987.

