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Abstract 

A patient visits the doctor; the doctor reviews the patient's history, 
asks questions, makes basic measurements (blood pressure, .. . ), and 
prescribes tests or treatment . The prescribed course of action is 
based on an assessment of patient risk-patients at higher risk are 
given more and faster attention. It is also sequential- it is too 
expensive to immediately order all tests which might later be of 
value . This paper presents two methods that together improve 
the accuracy of backprop nets on a pneumonia risk assessment 
problem by 10-50%. Rankprop improves on backpropagation with 
sum of squares error in ranking patients by risk. Multitask learning 
takes advantage of future lab tests available in the training set, but 
not available in practice when predictions must be made. Both 
methods are broadly applicable. 

1 Background 

There are 3,000,000 cases of pneumonia each year in the U.S., 900,000 of which 
are admitted to the hospital for treatment and testing. Most pneumonia patients 
recover given appropriate treatment, and many can be treated effectively without 
hospitalization. Nonetheless, pneumonia is serious: 100,000 of those hospitalized 
for pneumonia die from it, and many more are at elevated risk if not hospitalized. 

1.1 The Problem 

A primary goal of medical decision making is to accurately, swiftly, and econom­
ically identify patients at high risk from diseases like pneumonia so they may be 
hospitalized to receive aggressive testing and treatment; patients at low risk may be 
more comfortably, safely, and economically treated at home. Note that the diagno-
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sis of pneumonia has already been made; the goal is not to determine the illness, but 
how much risk the illness poses to the patient. Some of the most useful tests for do­
ing this require hospitalization and will be available only if preliminary assessment 
indicates it is warranted. Low risk patients can safely be treated as outpatients and 
can often be identified using measurements made prior to admission . 

The problem considered in this paper is to learn to rank pneumonia patients ac­
cording to their probability of mortality. We present two learning methods that 
combined outperform standard backpropagation by 10-50% in identifying groups 
of patients with least mortality risk . These methods are applicable to domains 
where the goal is to rank instances according to a probability function and where 
useful attributes do not become available until after the prediction must be made. 
In addition to medical decision making, this class includes problems as diverse as 
investment analysis in financial markets and autonomous vehicle navigation . 

1.2 The Pneumonia Database 

The Medis Pneumonia Database [6] contains 14,199 pneumonia cases collected from 
78 hospitals in 1989. Each patient in the database was diagnosed with pneumonia 
and hospitalized. 65 measurements are available for most patients. These include 
30 basic measurements typically acquired prior to hospitalization such as age, sex, 
and pulse, and 35 lab results such as blood counts or gases not available until after 
hospitalization. The database indicates how long each patient was hospitalized and 
whether the patient lived or died. 1,542 (10.9%) of the patients died. 

1.3 The Performance Criterion 

The Medis database indicates which patients lived or died. The most useful decision 
aid for this problem would predict which patients will live or die. But this is too 
difficult. In practice, the best that can be achieved is to estimate a probability 
of death (POD) from the observed symptoms. In fact, it is sufficient to learn to 
rank patients by POD so lower risk patients can be discriminated from higher risk 
patients. The patients at least risk may then be considered for outpatient care. 

The performance criterion used by others working with the Medis database [4] is the 
accuracy with which one can select a prespecified fraction of the patient population 
that do not die. For example, given a population of 10,000 patients, find the 20% 
of this population at least risk. To do this we learn a risk model and a threshold 
for this model that allows 20% of the population (2000 patients) to fall below it. If 
30 of the 2000 patients below this threshold died, the error rate is 30/2000 = 0.015. 
We say that the error rate for FOP 0.20 is 0.015 for this model ("FOP" stands for 
fraction of population). In this paper we consider FOPs 0.1, 0.2, 0.3, 0.4, and 0.5 . 
Our goal is to learn models and model thresholds, such that the error rate at each 
FOP is minimized. Models with acceptably low error rates might then be employed 
to help determine which patients do not require hospitalization. 

2 Methodology 

The Medis database is unusually large, with over 14K training patterns. Because we 
are interested in developing methods that will be effective in other domains where 
databases of this size are not available, we perform our experiments using small 
training sets randomly drawn from the 14K patterns and use the remaining patterns 
as test sets. For each method we run ten trials. For each trial we randomly sample 
2K patterns from the 14K pool for training. The 2K training sample is further split 
into a 1K backprop set used to train the net and a 1K halting set used to determine 
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when to halt training.! Once the network is trained, we run the 1K halt set through 
the model again to find the threshold that passes 10%,20%,30%,40%, and 50% of 
the halt set. The performance ofthe model is evaluated on the 12K unused patterns 
by determining how many of the cases that fall below threshold in this test set die. 
This is the error rate for that model at that FOP. 

3 The Traditional Approach: SSE on 0/1 Targets 

Sections 3-5 present three neural net approaches to pneumonia risk prediction. This 
section presents the standard approach: using backpropagation on sum of squares 
errors (SSE) with 0=lives/1=dies to predict mortality. This works well if early 
stopping is used to prevent overfitting. Section 4 presents rank prop (SSE on ranks 
instead of 0/1 targets). Rankprop, which learns to rank patients by risk instead 
of directly predicting mortality, works better. Section 5 uses multitask learning 
(MTL) to benefit from tests in the database that in practice will not be available 
until after deciding to admit the patient. Rankprop with MTL works even better. 

The straightforward approach to this problem is to use backprop to train a net to 
learn to predict which patients live or die, and then use the real-valued predictions of 
this net to sort patients by risk. This net has 30 inputs, 1 for each of the observed 
patient measurements, a hidden layer with 8 units2 , and a single output trained 
with O=lived, 1=died.3 Given an infinite training set, a net trained this way should 
learn to predict the probability of death for each patient, not which patients live or 
die. In the real world, however, where we rarely have an infinite number of training 
cases, a net will overtrain and begin to learn a very nonlinear function that outputs 
values near 0/1 for cases in the training set, but which does not generalize well. In 
this domain it is critical to use early stopping to halt training before this happens . 

Table 1 shows the error rates of nets trained with SSE on 0/1 targets for the five 
FOPs. Each entry is the mean of ten trials. The first entry in the table indicates 
that on average, in the 10% of the test population predicted by the nets to be at 
least risk, 1.4% died. We do not know the best achievable error rates for this data. 

Table 1: Error Rates of SSE on 0/1 Targets 

FOP 
Error Rate 

4 Using Rankprop to Rank Cases by Risk 

Because the goal is to find the fraction of the population least likely to die, it is 
sufficient just to learn to rank patients by risk. Rankprop learns to rank patients 
without learning to predict mortality. "Rankprop" is short for "backpropagation 
using sum of squares errors on estimated ranks". The basic idea is to sort the 
training set using the target values, scale the ranks from this sort (we scale uniformly 
to [0.25,0.75] with sigmoid output units), and use the scaled ranks as target values 
for standard backprop with SSE instead of the 0/1 values in the database. 

lperformance at different FOPs sometimes peaks at different epochs. We halt training 
separately for each FOP in all the experiments to insure this does not confound results. 

2To make comparisons between methods fair, we first found hidden layer sizes and 
learning parameters that performed well for each method. 

3Different representations such as 0.15/0.85 and different error metrics such as cross 
entropy did not perform better than SSE on 0/1 targets. 
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Ideally, we'd rank the training set by the true probabilities of death. Unfortunately, 
all we know is which patients lived or died. In the Medis database, 89% of the target 
values are O's and 11% are l's. There are many possible sorts consistent with these 
values. Which sort should backprop try to fit? It is the large number of possible 
sorts of the training set that makes backpropagating ranks challenging. Rankprop 
solves this problem by using the net model as it is being learned to order the training 
set when target values are tied. In this database, where there are many ties because 
there are only two target values, finding a proper ranking of the training set is a 
serious problem. Rankprop learns to adjust the target ranks of the training set at 
the same time it is learning to predict ranks from that training set. 

How does rankprop do this? Rankprop alternates between rank passes and backprop 
passes. On the rank pass it records the output of the net for each training pattern. 
It then sorts the training patterns using the target values (0 or 1 in the Medis 
database), but using the network's predictions for each pattern as a secondary 
sort key to break ties. The basic idea is to find the legal rank of the target values (0 
or 1) maximally consistent with the ranks the current model predicts . This closest 
match ranking of the target values is then used to define the target ranks used on 
the next backprop pass through the training set. Rankprop's pseudo code is: 

foreach epoch do { 
foreach pattern do { 

network_output[pattern] = forward_pass(pattern)} 
target_rank = sort_and_scale_patterns(target_value, network_output) 
foreach pattern do { 

backprop(target_rank[pattern] - network_output[pattern])}} 

where "sorkand..scale_patterns" sorts and ranks the training patterns using the sort 
keys specified in its arguments , the second being used to break ties in the first. 

Table 2 shows the mean rankprop performance using nets with 8 hidden units. 
The bottom row shows improvements over SSE on 0/1 targets. All differences are 
statistically significant. See Section 7.1 for discussion of why rank prop works better. 

Table 2: Error Rates of Rankprop and Improvement Over Standard Backprop 

FOP 
Error Rate 

% Change 

5 Learning From the Future with Multitask Learning 

The Medis database contains results from 36 lab tests that will be available only 
after patients are hospitalized. Unfortunately, these results will not be available 
when the model is used because the patients will not yet have been admitted . Mul­
titask learning (MTL) improves generalization by having a learner simultaneously 
learn sets of related tasks with a shared representation; what is learned for each 
task might benefit other tasks. In this application , we use MTL to benefit from the 
future lab results. The extra lab values are used as extra backprop outputs as shown 
in Figure 1. The extra outputs bias the shared hidden layer towards representations 
that better capture important features of the domain. See [2][3][9] for details about 
MTL and [1] for other ways of using extra outputs to bias learning. 

The MTL net has 64 hidden units . Table 3 shows the mean performance of ten runs 
of MTL with rankprop. The bottom row shows the improvement over rankprop 
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Figure 1: Using Future Lab Results as Extra Outputs To Bias Learning 
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alone. Although MTL lowers error at each FOP, only the differences at FOP = 0.3, 
0.4, and 0.5 are statistically significant with ten trials. Feature nets [7], a competing 
approach that trains nets to predict the missing future labs and uses the predictions 
as extra net inputs does T}ot yield benefits comparable to MTL on this problem. 

Table 3: Error Rates of Rankprop+MTL and Improvement Over Rankprop Alone 

FOP 
Error Rate 

% Change 

6 Comparison of Results 

Table 4 compares the performance of backprop using SSE on 0/1 targets with the 
combination of rankprop and multitask learning. On average, Rankprop+MTL re­
duces error more than 25%. This improvement is not easy to achieve-experiments 
with other learning methods such as Bayes Nets, Hierarchical Mixtures of Experts, 
and K-Nearest Neighbor (run not by us , but by experts in their use) indicate SSE 
on 0/1 targets is an excellent performer on this domain[4]. 

Table 4: Comparison Between SSE on 0/1 Targets and Rankprop+MTL 

FOP 0.1 0.2 0.3 0.4 0.5 
SSE on 0/1 .0140 .0190 .0252 .0340 .0421 

Rankprop+ MTL .0074 .0127 .0197 .0269 .0364 

% Change -47.1% I -33.2% I -21.8% I -20.9% I -13.5% 

7 Discussion 

7.1 Why Does Rankprop Work? 

We are given data from a target function f (x). Suppose the goal is not to learn a 
model of f(x), but to learn to sort patterns by f(x). Must we learn a model of f(x) 
and use its predictions for sorting? No. It suffices to learn a function g( x) such that 
for all Xl , X2, [g(xd::; g(X2)]- [J(xd::; f(X2)]. There can be many such functions 
g(x) for a given f(x), and some of these may be easier to learn than f(x). 
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Consider the probability function in Figure 2.1 that assigns to each x the probability 
p = f(x) that the outcome is 1; with probability 1 - p the outcome is O. Figure 
2.2 shows a training set sampled from this distribution. Where the probability is 
low, there are many O's. Where the probability is high , there are many l 's. Where 
the probability is near 0.5, there are O's and 1 'so This region causes problems for 
backprop using SSE on 0/1 targets: similar inputs are mapped to dissimilar targets . 
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Figure 2: SSE on 0/1 Targets and on Ranks for a Simple Probability Function 

Backprop learns a very nonlinear function if trained on Figure 2.2. This is unfor­
tunate: Figure 2.1 is smooth and maps similar inputs to similar outputs . If the 
goal is to learn to rank the data, we can learn a simpler , less nonlinear function 
instead. There exists a ranking of the training data such that if the ranks are used 
as backprop target values, the resulting function is less nonlinear than the original 
target function. Figure 2.3 shows these target rank values. Similar input patterns 
have more similar rank target values than the original target values . 

Rankprop tries to learn simple functions that directly support ranking. One diffi­
culty with this is that rankprop must learn a ranking of the training data while also 
training the model to predict ranks . We do not yet know under what conditions this 
parallel search will converge. We conjecture that when rankprop does converge, it 
will often be to simpler models than it would have learned from the original target 
values (0/1 in Medis), and that these simpler models will often generalize better. 

7.2 Other Applications of Rankprop and Learning From the Future 

Rankprop is applicable wherever a relative assessment is more useful or more learn­
able than an absolute one. One application is domains where quantitative mea­
surements are not available, but relative ones are[8]. For example, a game player 
might not be able to evaluate moves quantitatively , but might excel at relative 
move evaluation[10]. Another application is where the goal is to learn to order data 
drawn from a probability distribution, as in medical risk prediction . But it can also 
be applied wherever the goal is to order data. For example, in information filtering 
it is usually important to present more useful information to the user first, not to 
predict how important each is[5]. 

MTL is a general method for using related tasks. Here the extra MTL tasks are 
future measurements. Future measurements are available in many offline learning 
problems where there is opportunity to collect the measurements for the training 
set. For example, a robot or autonomous vehicle can more accurately measure the 
size, location, and identity of objects when it passes near them-road stripes can be 
detected reliably as a vehicle passes alongside them, but detecting them far ahead of 
a vehicle is hard. Since driving brings future road into the car's present, stripes can 
be measured accurately when passed and used as extra features in the training set . 
They can't be used as inputs for learning to drive because they will not be available 
until too late when driving. As MTL outputs , though, they provide information 
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that improves learning without requiring they be available at run time[2] . 

8 Summary 

This paper presents two methods that can improve generalization on a broad class 
of problems. This class includes identifying low risk pneumonia patients. The 
first method, rankprop , tries to learn simple models that support ranking future 
cases while simultaneously learning to rank the training set. The second, multitask 
learning, uses lab tests available only during training, as additional target values to 
bias learning towards a more predictive hidden layer. Experiments using a database 
of pneumonia patients indicate that together these methods outperform standard 
backpropagation by 10-50%. Rankprop and MTL are applicable to a large class of 
problems in which the goal is to learn a relative ranking over the instance space, 
and where the training data includes features that will not be available at run 
time. Such problems include identifying higher-risk medical patients as early as 
possible, identifying lower-risk financial investments, and visual analysis of scenes 
that become easier to analyze as they are approached in the future. 
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