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Abstract 

Backpropagation learning algorithms typically collapse the network's 
structure into a single vector of weight parameters to be optimized. We 
suggest that their performance may be improved by utilizing the struc­
tural information instead of discarding it, and introduce a framework for 
''tempering'' each weight accordingly. 

In the tempering model, activation and error signals are treated as approx­
imately independent random variables. The characteristic scale of weight 
changes is then matched to that ofthe residuals, allowing structural prop­
erties such as a node's fan-in and fan-out to affect the local learning rate 
and backpropagated error. The model also permits calculation of an upper 
bound on the global learning rate for batch updates, which in turn leads 
to different update rules for bias vs. non-bias weights. 

This approach yields hitherto unparalleled performance on the family re­
lations benchmark, a deep multi-layer network: for both batch learning 
with momentum and the delta-bar-delta algorithm, convergence at the 
optimal learning rate is sped up by more than an order of magnitude. 

1 Introduction 

Although neural networks are structured graphs, learning algorithms typically view them 
as a single vector of parameters to be optimized. All information about a network's archi­
tecture is thus discarded in favor of the presumption of an isotropic weight space - the 
notion that a priori all weights in the network are created equal. This serves to decouple 
the learning process from network design and makes a large body of function optimization 
techniques directly applicable to backpropagation learning. 

But what if the discarded structural information holds valuable clues for efficient weight 
optimization? Adaptive step size and second-order gradient techniques (Battiti, 1992) may 
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recover some of it, at considerable computational expense. Ad hoc attempts to incorporate 
structural information such as the fan-in (Plaut et aI., 1986) into local learning rates have be­
come a familiar part of backpropagation lore; here we deri ve a more comprehensi ve frame­
work - which we call tempering - and demonstrate its effectiveness. 

Tempering is based on modeling the acti vities and error signals in a backpropagation net­
work as independent random variables. This allows us to calculate activity- and weight­
invariant upper bounds on the effect of synchronous weight updates on a node's activity. 
We then derive appropriate local step size parameters by relating this maximal change in a 
node's acti vi ty to the characteristic scale of its residual through a global learning rate. 

Our subsequent derivation of an upper bound on the global learning rate for batch learning 
suggests that the d.c. component of the error signal be given special treatment. Our exper­
iments show that the resulting method of error shunting allows the global learning rate to 
approach its predicted maximum, for highly efficient learning performance. 

2 Local Learning Rates 

Consider a neural network with feedforward activation given by 

x j = /j (Yj) , Yj = L Xi Wij , 

iEAj 

(1) 

where Aj denotes the set of anterior nodes feeding directly into node j, and /j is a nonlinear 
(typically sigmoid) activation function. We imply that nodes are activated in the appropriate 
sequence, and that some have their values clamped so as to represent external inputs. 

With a local learning rate of'1j for node j, gradient descent in an objective function E pro­
duces the weight update 

(2) 

Linearizing Ij around Yj approximates the resultant change in activation Xj as 

(3) 
iEAj iEAj 

Our goal is to put the scale of ~Xj in relation to that of the error signal tSj . Specifically, when 
averaged over many training samples, we want the change in output activity of each node 
in response to each pattern limited to a certain proportion - given by the global learning 
rate '1 - of its residual. We achieve this by relating the variation of ~X j over the training 
set to that of the error signal: 

(4) 

where (.) denotes averaging over training samples. Formally, this approach may be inter­
preted as a diagonal approximation of the inverse Fischer information matrix (Amari, 1995). 
We implement (4) by deriving an upper bound for the left-hand side which is then equated 
with the right-hand side. Replacing the acti vity-dependent slope of Ij by its maximum value 

s(/j) == maxl/j(u)1 
u 

(5) 

and assuming that there are no correlations! between inputs Xi and error tSj ' we obtain 

(~x}):::; '1} s(/j)2 (tS})f.j (6) 

1 Note that such correlations are minimized by the local weight update. 
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from (3), provided that 

ej ~ e; == ([ ,Lxlf) , 
lEA] 

(7) 

We can now satisfy (4) by setting the local learning rate to 

TJ' = TJ 
J - 8 (fj ).j[j . (8) 

There are several approaches to computing an upper bound ej on the total squared input 
power e; . One option would be to calculate the latter empirically during training, though 
this raises sampling and stability issues. For external inputs we may precompute e; orderive 
an upper bound based on prior knowledge of the training data. For inputs from other nodes 
in the network we assume independence and derive ej from the range of their activation 
functions: 

ej = L p(fd 2 , where p(fd == ffiuax/i(u)2. 
iEAj 

(9) 

Note that when all nodes use the same activation function I, we obtain the well-known 
Vfan-in heuristic (Plaut et al., 1986) as a special case of (8). 

3 Error Backpropagation 

In deriving local learning rates above we have tacitly used the error signal as a stand-in for 
the residual proper, i.e. the distance to the target. For output nodes we can scale the error to 
never exceed the residual: 

(10) 

Note that for the conventional quadratic error this simplifies to <Pj = s(/j) . What about 
the remainder of the network? Unlike (Krogh et aI., 1990), we do not wish to prescribe 
definite targets (and hence residuals) for hidden nodes. Instead we shall use our bounds 
and independence arguments to scale backpropagated error signals to roughly appropriate 
magnitude. For this purpose we introduce an attenuation coefficient aj into the error back­
propagation equation: 

c5j = aj II (Yi) L Wjj c5j , 

jEP, 

(11) 

where Pi denotes the set of posterior nodes fed directly from node i. We posit that the ap­
propriate variation for c5i be no more than the weighted average of the variation of back­
propagated errors: 

(12) 

whereas, assuming independence between the c5j and replacing the slope of Ii by its max­
imum value, (11) gives us 

(c5?) ~ a? 8(f;)2 L w i / (c5/) . (13) 
jEP, 

Again we equate the right-hand sides of both inequalities to satisfy (12), yielding 

1 
ai == (14) 

8(fdJiP;T . 
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Note that the incorporation ofthe weights into (12) is ad hoc, as we have no a priori reason 
to scale a node's step size in proportion to the size of its vector of outgoing weights. We 
have chosen (12) simply because it produces a weight-invariant value for the attenuation 
coefficient. The scale of the backpropagated error could be controlled more rigorously, at 
the expense of having to recalculate ai after each weight update. 

4 Global Learning Rate 

We now derive the appropriate global learning rate for the batch weight update 

LiWij == 1]j L dj (t) Xi (t) (15) 
tET 

over a non-redundant training sample T. Assuming independent and zero-mean residuals, 
we then have 

(16) 

by virtue of (4). Under these conditions we can ensure 

~ 2 2) 
/).Xj ~ (dj , (17) 

i.e. that the variation of the batch weight update does not exceed that of the residual, by 
using a global learning rate of 

1] ~ 1]* == l/JiTf. (18) 

Even when redundancy in the training set forces us to use a lower rate, knowing the upper 
bound 1]* effectively allows an educated guess at 1], saving considerable time in practice. 

5 Error Shunting 

It remains to deal with the assumption made above that the residuals be zero-mean, i.e. that 
(dj) = O. Any d.c. component in the error requires a learning rate inversely proportional to 
the batch size - far below 1]* , the rate permissible for zero-mean residuals. This suggests 
handling the d.c. component of error signals separately. This is the proper job of the bias 
weight, so we update it accordingly: 

(19) 

In order to allow learning at rates close to 1]* for all other weights, their error signals are 
then centered by subtracting the mean: 

(20) 
tET 

T/j (L dj (t) X i (t) - (Xi) L dj (t)) (21) 
tET tET 

Note that both sums in (21) must be collected in batch implementations of back propagation 
anyway - the only additional statistic required is the average input activity (Xi) ' Indeed 
for batch update centering errors is equivalent to centering inputs, which is known to assist 
learning by removing a large eigenvalue of the Hessian (LeCun et al., 1991). We expect 
online implementations to perform best when both input and error signals are centered so 
as to improve the stochastic approximation. 
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Figure 1: Backpropagation network for learning family relations (Hinton, 1986). 

6 Experimental Setup 

We tested these ideas on the family relations task (Hinton, 1986): a backpropagation net­
work is given examples of a family member and relationship as input, and must indicate 
on its output which family members fit the relational description according to an underly­
ing family tree. Its architecture (Figure 1) consists of a central association layer of hidden 
units surrounded by three encoding layers that act as informational bottlenecks, forcing the 
network to make the deep structure of the data explicit. 

The input is presented to the network in a canonical local encoding: for any given training 
example, exactly one input in each of the two input layers is active. On account of the always 
active bias input, the squared input power for tempering at these layers is thus C = 4. Since 
the output uses the same local code, only one or two targets at a time will be active; we 
therefore do not attenuate error signals in the immediately preceding layer. We use cross­
entropy error and the logistic squashing function (1 + e-Y)-l at the output (giving ¢> = 1) 
but prefer the hyperbolic tangent for hidden units, with p(tanh) = s(tanh) = 1. 

To illustrate the impact of tempering on this architecture we translate the combined effect 
of local learning rate and error attenuation into an effective learning rate2 for each layer, 
shown on the right in Figure 1. We observe that effective learning rates are largest near the 
output and decrease towards the input due to error attenuation. Contrary to textbook opinion 
(LeCun, 1993; Haykin, 1994, page 162) we find that such unequal step sizes are in fact the 
key to efficient learning here. We suspect that the logistic squashing function may owe its 
popUlarity largely to the error attenuation side-effect inherent in its maximum slope of 114-
We expect tempering to be applicable to a variety of backpropagation learning algorithms; 
here we present first results for batch learning with momentum and the delta-bar-delta 
rule (Jacobs, 1988). Both algorithms were tested under three conditions: conventional, 
tempered (as described in Sections 2 and 3), and tempered with error shunting. All experi­
ments were performed with a customized simulator based on Xerion 3.1.3 

For each condition the global learning rate TJ was empirically optimized (to single-digit pre­
cision) for fastest reliable learning performance, as measured by the sum of empirical mean 
and standard deviation of epochs required to reach a given low value of the cost function. 
All other parameters were held in variant across experiments; their values (shown in Table 1) 
were chosen in advance so as not to bias the results. 

2This is possible only for strictly layered networks, i.e. those with no shortcut (or "skip-through") 
connections between topologically non-adjacent layers. 

3 At the time of writing, the Xerion neural network simulator and its successor UTS are available 
by anonymous file transfer from ai.toronto.edu, directory pub/xerion. 
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Parameter Val ue II Parameter I Value I 
training set size (= epoch) 100 zero-error radius around target 0.2 
momentum parameter 0.9 acceptable error & weight cost 1.0 
uniform initial weight range ±0.3 delta-bar-delta gain increment 0.1 
weight decay rate per epoch 10-4 delta-bar-delta gain decrement 0.9 

Table 1: Invariant parameter settings for our experim~nts. 

7 Experimental Results 

Table 2 lists the empirical mean and standard deviation (over ten restarts) of the number 
of epochs required to learn the family relations task under each condition, and the optimal 
learning rate that produced this performance. Training times for conventional backpropaga­
tion are quite long; this is typical for deep multi-layer networks. For comparison, Hinton 
reports around 1,500 epochs on this problem when both learning rate and momentum have 
been optimized (personal communication). Much faster convergence - though to a far 
looser criterion - has recently been observed for online algorithms (O'Reilly, 1996). 

Tempering, on the other hand, is seen here to speed up two batch learning methods by al­
most an order of magnitude. It reduces not only the average training time but also its coef­
ficient of variation, indicating a more reliable optimization process. Note that tempering 
makes simple batch learning with momentum run about twice as fast as the delta-bar-delta 
algorithm. This is remarkable since delta-bar-delta uses online measurements to continu­
ally adapt the learning rate for each individual weight, whereas tempering merely prescales 
it based on the network's architecture. We take this as evidence that tempering establishes 
appropriate local step sizes upfront that delta-bar-delta must discover empirically. 

This suggests that by using tempering to set the initial (equilibrium) learning rates for delta­
bar-delta, it may be possible to reap the benefits of both prescaling and adaptive step size 
control. Indeed Table 2 confirms that the respective speedups due to tempering and delta­
bar-delta multiply when the two approaches are combined in this fashion. Finally, the ad­
dition of error shunting increases learning speed yet further by allowing the global learning 
rate to be brought close to the maximum of 7]* = 0.1 that we would predict from (18). 

8 Discussion 

In our experiments we have found tempering to dramatically improve speed and reliability 
of learning. More network architectures, data sets and learning algorithms will have to be 
"tempered" to explore the general applicability and limitations of this approach; we also 
hope to extend it to recurrent networks and online learning. Error shunting has proven useful 
in facilitating of near-maximal global learning rates for rapid optimization. 

Algorithm batch & momentum delta-bar-delta 

Condition 7]= mean st.d. 7]= mean st.d. 

conventional 3.10- 3 2438 ± 1153 3.10-4 696± 218 
with tempering 1.10-2 339 ± 95.0 3.10- 2 89.6 ± 11 .8 
tempering & shunting 4.10- 2 142±27.1 9.10-2 61.7±8.1 

Table 2: Epochs required to learn the family relations task. 
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Although other schemes may speed up backpropagation by comparable amounts, our ap­
proach has some unique advantages. It is computationally cheap to implement: local learn­
ing and error attenuation rates are invariant with respect to network weights and activities 
and thus need to be recalculated only when the network architecture is changed. 

More importantly, even advanced gradient descent methods typically retain the isotropic 
weight space assumption that we improve upon; one would therefore expect them to be­
nefit from tempering as much as delta-bar-delta did in the experiments reported here. For 
instance, tempering could be used to set non-isotropic model-trust regions for conjugate and 
second-order gradient descent algorithms. 

Finally, by restricting ourselves to fixed learning rates and attenuation factors for now we 
have arrived at a simplified method that is likely to leave room for further improvement. 
Possible refinements include taking weight vector size into account when attenuating error 
signals, or measuring quantities such as (62 ) online instead of relying on invariant upper 
bounds. How such adaptive tempering schemes will compare to and interact with existing 
techniques for efficient backpropagation learning remains to be explored. 
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