
Tempering Backpropagation Networks:
Not All Weights are Created Equal

Nicol N. Schraudolph
EVOTEC BioSystems GmbH

Grandweg 64
22529 Hamburg, Germany

nici@evotec.de

Terrence J. Sejnowski
Computational Neurobiology Lab
The Salk Institute for BioI. Studies
San Diego, CA 92186-5800, USA

terry@salk.edu

Abstract

Backpropagation learning algorithms typically collapse the network's
structure into a single vector of weight parameters to be optimized. We
suggest that their performance may be improved by utilizing the struc­
tural information instead of discarding it, and introduce a framework for
''tempering'' each weight accordingly.

In the tempering model, activation and error signals are treated as approx­
imately independent random variables. The characteristic scale of weight
changes is then matched to that ofthe residuals, allowing structural prop­
erties such as a node's fan-in and fan-out to affect the local learning rate
and backpropagated error. The model also permits calculation of an upper
bound on the global learning rate for batch updates, which in turn leads
to different update rules for bias vs. non-bias weights.

This approach yields hitherto unparalleled performance on the family re­
lations benchmark, a deep multi-layer network: for both batch learning
with momentum and the delta-bar-delta algorithm, convergence at the
optimal learning rate is sped up by more than an order of magnitude.

1 Introduction

Although neural networks are structured graphs, learning algorithms typically view them
as a single vector of parameters to be optimized. All information about a network's archi­
tecture is thus discarded in favor of the presumption of an isotropic weight space - the
notion that a priori all weights in the network are created equal. This serves to decouple
the learning process from network design and makes a large body of function optimization
techniques directly applicable to backpropagation learning.

But what if the discarded structural information holds valuable clues for efficient weight
optimization? Adaptive step size and second-order gradient techniques (Battiti, 1992) may

564 N. N. SCHRAUDOLPH. T. J. SEJNOWSKI

recover some of it, at considerable computational expense. Ad hoc attempts to incorporate
structural information such as the fan-in (Plaut et aI., 1986) into local learning rates have be­
come a familiar part of backpropagation lore; here we deri ve a more comprehensi ve frame­
work - which we call tempering - and demonstrate its effectiveness.

Tempering is based on modeling the acti vities and error signals in a backpropagation net­
work as independent random variables. This allows us to calculate activity- and weight­
invariant upper bounds on the effect of synchronous weight updates on a node's activity.
We then derive appropriate local step size parameters by relating this maximal change in a
node's acti vi ty to the characteristic scale of its residual through a global learning rate.

Our subsequent derivation of an upper bound on the global learning rate for batch learning
suggests that the d.c. component of the error signal be given special treatment. Our exper­
iments show that the resulting method of error shunting allows the global learning rate to
approach its predicted maximum, for highly efficient learning performance.

2 Local Learning Rates

Consider a neural network with feedforward activation given by

x j = /j (Yj) , Yj = L Xi Wij ,

iEAj

(1)

where Aj denotes the set of anterior nodes feeding directly into node j, and /j is a nonlinear
(typically sigmoid) activation function. We imply that nodes are activated in the appropriate
sequence, and that some have their values clamped so as to represent external inputs.

With a local learning rate of'1j for node j, gradient descent in an objective function E pro­
duces the weight update

(2)

Linearizing Ij around Yj approximates the resultant change in activation Xj as

(3)
iEAj iEAj

Our goal is to put the scale of ~Xj in relation to that of the error signal tSj . Specifically, when
averaged over many training samples, we want the change in output activity of each node
in response to each pattern limited to a certain proportion - given by the global learning
rate '1 - of its residual. We achieve this by relating the variation of ~X j over the training
set to that of the error signal:

(4)

where (.) denotes averaging over training samples. Formally, this approach may be inter­
preted as a diagonal approximation of the inverse Fischer information matrix (Amari, 1995).
We implement (4) by deriving an upper bound for the left-hand side which is then equated
with the right-hand side. Replacing the acti vity-dependent slope of Ij by its maximum value

s(/j) == maxl/j(u)1
u

(5)

and assuming that there are no correlations! between inputs Xi and error tSj ' we obtain

(~x}):::; '1} s(/j)2 (tS})f.j (6)

1 Note that such correlations are minimized by the local weight update.

Tempering Backpropagation Networks: Not All Weights Are Created Equal 565

from (3), provided that

ej ~ e; == ([,Lxlf) ,
lEA]

(7)

We can now satisfy (4) by setting the local learning rate to

TJ' = TJ
J - 8 (fj).j[j . (8)

There are several approaches to computing an upper bound ej on the total squared input
power e; . One option would be to calculate the latter empirically during training, though
this raises sampling and stability issues. For external inputs we may precompute e; orderive
an upper bound based on prior knowledge of the training data. For inputs from other nodes
in the network we assume independence and derive ej from the range of their activation
functions:

ej = L p(fd 2 , where p(fd == ffiuax/i(u)2.
iEAj

(9)

Note that when all nodes use the same activation function I, we obtain the well-known
Vfan-in heuristic (Plaut et al., 1986) as a special case of (8).

3 Error Backpropagation

In deriving local learning rates above we have tacitly used the error signal as a stand-in for
the residual proper, i.e. the distance to the target. For output nodes we can scale the error to
never exceed the residual:

(10)

Note that for the conventional quadratic error this simplifies to <Pj = s(/j) . What about
the remainder of the network? Unlike (Krogh et aI., 1990), we do not wish to prescribe
definite targets (and hence residuals) for hidden nodes. Instead we shall use our bounds
and independence arguments to scale backpropagated error signals to roughly appropriate
magnitude. For this purpose we introduce an attenuation coefficient aj into the error back­
propagation equation:

c5j = aj II (Yi) L Wjj c5j ,

jEP,

(11)

where Pi denotes the set of posterior nodes fed directly from node i. We posit that the ap­
propriate variation for c5i be no more than the weighted average of the variation of back­
propagated errors:

(12)

whereas, assuming independence between the c5j and replacing the slope of Ii by its max­
imum value, (11) gives us

(c5?) ~ a? 8(f;)2 L w i / (c5/) . (13)
jEP,

Again we equate the right-hand sides of both inequalities to satisfy (12), yielding

1
ai == (14)

8(fdJiP;T .

566 N. N. SCHRAUDOLPH, T. J. SEJNOWSKI

Note that the incorporation ofthe weights into (12) is ad hoc, as we have no a priori reason
to scale a node's step size in proportion to the size of its vector of outgoing weights. We
have chosen (12) simply because it produces a weight-invariant value for the attenuation
coefficient. The scale of the backpropagated error could be controlled more rigorously, at
the expense of having to recalculate ai after each weight update.

4 Global Learning Rate

We now derive the appropriate global learning rate for the batch weight update

LiWij == 1]j L dj (t) Xi (t) (15)
tET

over a non-redundant training sample T. Assuming independent and zero-mean residuals,
we then have

(16)

by virtue of (4). Under these conditions we can ensure

~ 2 2)
/).Xj ~ (dj , (17)

i.e. that the variation of the batch weight update does not exceed that of the residual, by
using a global learning rate of

1] ~ 1]* == l/JiTf. (18)

Even when redundancy in the training set forces us to use a lower rate, knowing the upper
bound 1]* effectively allows an educated guess at 1], saving considerable time in practice.

5 Error Shunting

It remains to deal with the assumption made above that the residuals be zero-mean, i.e. that
(dj) = O. Any d.c. component in the error requires a learning rate inversely proportional to
the batch size - far below 1]* , the rate permissible for zero-mean residuals. This suggests
handling the d.c. component of error signals separately. This is the proper job of the bias
weight, so we update it accordingly:

(19)

In order to allow learning at rates close to 1]* for all other weights, their error signals are
then centered by subtracting the mean:

(20)
tET

T/j (L dj (t) X i (t) - (Xi) L dj (t)) (21)
tET tET

Note that both sums in (21) must be collected in batch implementations of back propagation
anyway - the only additional statistic required is the average input activity (Xi) ' Indeed
for batch update centering errors is equivalent to centering inputs, which is known to assist
learning by removing a large eigenvalue of the Hessian (LeCun et al., 1991). We expect
online implementations to perform best when both input and error signals are centered so
as to improve the stochastic approximation.

Tempering Backpropagation Networks: Not All Weights Are Created Equal 567

2 OO~O~OOOOOOO TJeff ~
person 000000000000

'""<Lt tr,: j 1*'j:'i~ 1.5 TJ
000000

A"~t{(d$·.· .. ·:· .. ·.·.d+;BI». .25 TJ

000000000000
~£;;?dt!i """" "' ~El~ .10TJ

000000 000000

person 1

~if;i ·' :r:.· . ; .. 0;:....", ..<1!. (i+ 1 ~ S·!· .·· .. ;~ .05 TJ

OOOOO~OOOOOO OOOOOOOOOO~O
000000000000 relationship

Figure 1: Backpropagation network for learning family relations (Hinton, 1986).

6 Experimental Setup

We tested these ideas on the family relations task (Hinton, 1986): a backpropagation net­
work is given examples of a family member and relationship as input, and must indicate
on its output which family members fit the relational description according to an underly­
ing family tree. Its architecture (Figure 1) consists of a central association layer of hidden
units surrounded by three encoding layers that act as informational bottlenecks, forcing the
network to make the deep structure of the data explicit.

The input is presented to the network in a canonical local encoding: for any given training
example, exactly one input in each of the two input layers is active. On account of the always
active bias input, the squared input power for tempering at these layers is thus C = 4. Since
the output uses the same local code, only one or two targets at a time will be active; we
therefore do not attenuate error signals in the immediately preceding layer. We use cross­
entropy error and the logistic squashing function (1 + e-Y)-l at the output (giving ¢> = 1)
but prefer the hyperbolic tangent for hidden units, with p(tanh) = s(tanh) = 1.

To illustrate the impact of tempering on this architecture we translate the combined effect
of local learning rate and error attenuation into an effective learning rate2 for each layer,
shown on the right in Figure 1. We observe that effective learning rates are largest near the
output and decrease towards the input due to error attenuation. Contrary to textbook opinion
(LeCun, 1993; Haykin, 1994, page 162) we find that such unequal step sizes are in fact the
key to efficient learning here. We suspect that the logistic squashing function may owe its
popUlarity largely to the error attenuation side-effect inherent in its maximum slope of 114-
We expect tempering to be applicable to a variety of backpropagation learning algorithms;
here we present first results for batch learning with momentum and the delta-bar-delta
rule (Jacobs, 1988). Both algorithms were tested under three conditions: conventional,
tempered (as described in Sections 2 and 3), and tempered with error shunting. All experi­
ments were performed with a customized simulator based on Xerion 3.1.3

For each condition the global learning rate TJ was empirically optimized (to single-digit pre­
cision) for fastest reliable learning performance, as measured by the sum of empirical mean
and standard deviation of epochs required to reach a given low value of the cost function.
All other parameters were held in variant across experiments; their values (shown in Table 1)
were chosen in advance so as not to bias the results.

2This is possible only for strictly layered networks, i.e. those with no shortcut (or "skip-through")
connections between topologically non-adjacent layers.

3 At the time of writing, the Xerion neural network simulator and its successor UTS are available
by anonymous file transfer from ai.toronto.edu, directory pub/xerion.

568 N. N. SCHRAUDOLPH. T. 1. SEJNOWSKI

Parameter Val ue II Parameter I Value I
training set size (= epoch) 100 zero-error radius around target 0.2
momentum parameter 0.9 acceptable error & weight cost 1.0
uniform initial weight range ±0.3 delta-bar-delta gain increment 0.1
weight decay rate per epoch 10-4 delta-bar-delta gain decrement 0.9

Table 1: Invariant parameter settings for our experim~nts.

7 Experimental Results

Table 2 lists the empirical mean and standard deviation (over ten restarts) of the number
of epochs required to learn the family relations task under each condition, and the optimal
learning rate that produced this performance. Training times for conventional backpropaga­
tion are quite long; this is typical for deep multi-layer networks. For comparison, Hinton
reports around 1,500 epochs on this problem when both learning rate and momentum have
been optimized (personal communication). Much faster convergence - though to a far
looser criterion - has recently been observed for online algorithms (O'Reilly, 1996).

Tempering, on the other hand, is seen here to speed up two batch learning methods by al­
most an order of magnitude. It reduces not only the average training time but also its coef­
ficient of variation, indicating a more reliable optimization process. Note that tempering
makes simple batch learning with momentum run about twice as fast as the delta-bar-delta
algorithm. This is remarkable since delta-bar-delta uses online measurements to continu­
ally adapt the learning rate for each individual weight, whereas tempering merely prescales
it based on the network's architecture. We take this as evidence that tempering establishes
appropriate local step sizes upfront that delta-bar-delta must discover empirically.

This suggests that by using tempering to set the initial (equilibrium) learning rates for delta­
bar-delta, it may be possible to reap the benefits of both prescaling and adaptive step size
control. Indeed Table 2 confirms that the respective speedups due to tempering and delta­
bar-delta multiply when the two approaches are combined in this fashion. Finally, the ad­
dition of error shunting increases learning speed yet further by allowing the global learning
rate to be brought close to the maximum of 7]* = 0.1 that we would predict from (18).

8 Discussion

In our experiments we have found tempering to dramatically improve speed and reliability
of learning. More network architectures, data sets and learning algorithms will have to be
"tempered" to explore the general applicability and limitations of this approach; we also
hope to extend it to recurrent networks and online learning. Error shunting has proven useful
in facilitating of near-maximal global learning rates for rapid optimization.

Algorithm batch & momentum delta-bar-delta

Condition 7]= mean st.d. 7]= mean st.d.

conventional 3.10- 3 2438 ± 1153 3.10-4 696± 218
with tempering 1.10-2 339 ± 95.0 3.10- 2 89.6 ± 11 .8
tempering & shunting 4.10- 2 142±27.1 9.10-2 61.7±8.1

Table 2: Epochs required to learn the family relations task.

Tempering Backpropagation Networks: Not All Weights Are Created Equal 569

Although other schemes may speed up backpropagation by comparable amounts, our ap­
proach has some unique advantages. It is computationally cheap to implement: local learn­
ing and error attenuation rates are invariant with respect to network weights and activities
and thus need to be recalculated only when the network architecture is changed.

More importantly, even advanced gradient descent methods typically retain the isotropic
weight space assumption that we improve upon; one would therefore expect them to be­
nefit from tempering as much as delta-bar-delta did in the experiments reported here. For
instance, tempering could be used to set non-isotropic model-trust regions for conjugate and
second-order gradient descent algorithms.

Finally, by restricting ourselves to fixed learning rates and attenuation factors for now we
have arrived at a simplified method that is likely to leave room for further improvement.
Possible refinements include taking weight vector size into account when attenuating error
signals, or measuring quantities such as (62) online instead of relying on invariant upper
bounds. How such adaptive tempering schemes will compare to and interact with existing
techniques for efficient backpropagation learning remains to be explored.

Acknowledgements

We would like to thank Peter Dayan, Rich Zemel and Jenny Orr for being instrumental in
discussions that helped shape this work. Geoff Hinton not only offered invaluable com­
ments, but is the source of both our simulator and benchmark problem. N. Schraudolph
received financial support from the McDonnell-Pew Center for Cognitive Neuroscience in
San Diego, and the Robert Bosch Stiftung GmbH.

References

Amari, S.-1. (1995). Learning and statistical inference. In Arbib, M. A., editor, The Hand­
book of Brain Theory and Neural Networks, pages 522-526. MIT Press, Cambridge.

Battiti, T. (1992). First- and second-order methods for learning: Between steepest descent
and Newton's method. Neural Computation,4(2):141-166.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmillan, New York.

Hinton, G. (1986). Learning distributed representations of concepts. In Proceedings of
the Eighth Annual Conference of the Cognitive Science Society, pages 1-12, Amherst
1986. Lawrence Erlbaum, Hillsdale.

Jacobs, R. (1988). Increased rates of convergence through learning rate adaptation. Neural
Networks,1:295-307.

Krogh, A., Thorbergsson, G., and Hertz, J. A. (1990). A cost function for internal repres­
entations. In Touretzky, D. S., editor,Advances in Neural Information Processing Sys­
tems, volume 2, pages 733-740, Denver, CO, 1989. Morgan Kaufmann, San Mateo.

LeCun, Y. (1993). Efficient learning & second-order methods. Tutorial given at the NIPS
Conference, Denver, CO.

LeCun, Y., Kanter, I., and Solla, S. A. (1991). Second order properties of error surfaces:
Learning time and generalization. In Lippmann, R. P., Moody, J. E., and Touretzky,
D. S., editors, Advances in Neural Information Processing Systems, volume 3, pages
918-924, Denver, CO, 1990. Morgan Kaufmann, San Mateo.

O'Reilly, R. C. (1996). Biologically plausible error-driven learning using local activation
differences: The generalized recirculation algorithm. Neural Computation, 8.

Plaut, D., Nowlan, S., and Hinton, G. (1986). Experiments on learning by back propaga­
tion. Technical Report CMU-CS-86-126, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

