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Abstract 

We study the characteristics of learning with ensembles. Solving 
exactly the simple model of an ensemble of linear students, we 
find surprisingly rich behaviour. For learning in large ensembles, 
it is advantageous to use under-regularized students, which actu­
ally over-fit the training data. Globally optimal performance can 
be obtained by choosing the training set sizes of the students ap­
propriately. For smaller ensembles, optimization of the ensemble 
weights can yield significant improvements in ensemble generaliza­
tion performance, in particular if the individual students are sub­
ject to noise in the training process. Choosing students with a wide 
range of regularization parameters makes this improvement robust 
against changes in the unknown level of noise in the training data. 

1 INTRODUCTION 

An ensemble is a collection of a (finite) number of neural networks or other types 
of predictors that are trained for the same task. A combination of many differ­
ent predictors can often improve predictions, and in statistics this idea has been 
investigated extensively, see e.g. [1, 2, 3]. In the neural networks community, en­
sembles of neural networks have been investigated by several groups, see for instance 
[4, 5, 6, 7]. Usually the networks in the ensemble are trained independently and 
then their predictions are combined. 

In this paper we study an ensemble of linear networks trained on different but 
overlapping training sets. The limit in which all the networks are trained on the 
full data set and the one where all the data sets are different has been treated in 
[8] . In this paper we treat the case of intermediate training set sizes and overlaps 
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exactly, yielding novel insights into ensemble learning. Our analysis also allows us to 
study the effect of regularization and of having different predictors in an ensemble. 

2 GENERAL FEATURES OF ENSEMBLE LEARNING 

We consider the task of approximating a target function fo from RN to R. It 
will be assumed that we can only obtain noisy samples of the function, and the 
(now stochastic) target function will be denoted y(x) . The inputs x are taken 
to be drawn from some distribution P(x). Assume now that an ensemble of K 
independent predictors fk(X) of y(x) is available. A weighted ensemble average is 
denoted by a bar, like 

lex) = L,wkfk(X), (1) 
k 

which is the final output of the ensemble. One can think of the weight Wk as the 
belief in predictor k and we therefore constrain the weights to be positive and sum 
to one. For an input x we define the error of the ensemble c(x), the error of the 
kth predictor ck(X), and its ambiguity ak(x) 

c(x) (y(x) -lex)? (2) 
ck(X) (y(x) - fk(X)? (3) 

(fk(X) -1(x»2. (4) 

The ensemble error can be written as c(x) = lex) - a(x) [7], where lex) = 
L,k Wkck(X) is the average error over the individual predictors and a(x) = 
L,k Wkak(X) is the average of their ambiguities, which is the variance of the output 
over the ensemble. By averaging over the input distribution P(x) (and implicitly 
over the target outputs y(x», one obtains the ensemble generalization error 

(5) 

where c(x) averaged over P(x) is simply denoted c, and similarly for land a. The 
first term on the right is the weighted average of the generalization errors of the indi­
vidual predictors, and the second is the weighted average of the ambiguities, which 
we refer to as the ensemble ambiguity. An important feature of equation (5) is that 
it separates the generalization error into a term that depends on the generalization 
errors of the individual students and another term that contains all correlations be­
tween the students. The latter can be estimated entirely from unlabeled data, i. e., 
without any knowledge of the target function to be approximated. The relation (5) 
also shows that the more the predictors differ, the lower the error will be, provided 
the individual errors remain constant. 

In this paper we assume that the predictors are trained on a sample of p examples 
of the target function, (xt',yt'), where yt' = fo(xt') + TJt' and TJt' is some additive 
noise (Jl. = 1, ... ,p). The predictors, to which we refer as students in this context 
because they learn the target function from the training examples, need not be 
trained on all the available data. In fact, since training on different data sets will 
generally increase the ambiguity, it is possible that training on subsets of the data 
will improve generalization. An additional advantage is that, by holding out for 
each student a different part of the total data set for the purpose of testing, one 
can use the whole data set for training the ensemble while still getting an unbiased 
estimate of the ensemble generalization error. Denoting this estimate by f, one has 

(6) 

where Ctest = L,k WkCtest,k is the average of the students' test errors. As already 
pointed out, the estimate ft of the ensemble ambiguity can be found from unlabeled 
data. 
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So far, we have not mentioned how to find the weights Wk. Often uniform weights 
are used, but optimization of the weights in some way is tempting. In [5, 6] the 
training set was used to perform the optimization, i.e., the weights were chosen to 
minimize the ensemble training error. This can easily lead to over-fitting, and in [7] 
it was suggested to minimize the estimated generalization error (6) instead. If this 
is done, the estimate (6) acquires a bias; intuitively, however, we expect this effect 
to be small for large ensembles. 

3 ENSEMBLES OF LINEAR STUDENTS 

In preparation for our analysis of learning with ensembles of linear students we now 
briefly review the case of a single linear student, sometimes referred to as 'linear 
perceptron learning'. A linear student implements the input-output mapping 

1 T 
J(x) = ..JNw x 

parameterized in terms of an N-dimensional parameter vector w with real compo­
nents; the scaling factor 1/..JN is introduced here for convenience, and . .. T denotes 
the transpose of a vector. The student parameter vector w should not be con­
fused with the ensemble weights Wk. The most common method for training such 
a linear student (or parametric inference models in general) is minimization of the 
sum-of-squares training error 

E = L:(y/J - J(x/J))2 + Aw2 
/J 

where J.L = 1, ... ,p numbers the training examples. To prevent the student from 
fitting noise in the training data, a weight decay term Aw2 has been added. The size 
of the weight decay parameter A determines how strongly large parameter vectors 
are penalized; large A corresponds to a stronger regularization of the student. 

For a linear student, the global minimum of E can easily be found. However, 
in practical applications using non-linear networks, this is generally not true, and 
training can be thought of as a stochastic process yielding a different solution each 
time. We crudely model this by considering white noise added to gradient descent 
updates of the parameter vector w. This yields a limiting distribution of parameter 
vectors P(w) ex: exp(-E/2T), where the 'temperature' T measures the amount of 
noise in the training process. 

We focus our analysis on the 'thermodynamic limit' N -t 00 at constant normalized 
number of training examples, ex = p/ N. In this limit, quantities such as the training 
or generalization error become self-averaging, i.e., their averages over all training 
sets become identical to their typical values for a particular training set. Assume 
now that the training inputs x/J are chosen randomly and independently from a 
Gaussian distribution P(x) ex: exp( - ~x2), and that training outputs are generated 
by a linear target function corrupted by additive noise, i.e., y/J = w'f x/J /..IN + 1]/J, 
where the 1]/J are zero mean noise variables with variance u2 • Fixing the length of the 
parameter vector of the target function to w~ = N for simplicity, the generalization 
error of a linear student with weight decay A and learning noise T becomes [9] 

8G 
(; = (u2 + T)G + A(U2 - A) 8A . (7) 

On the r.h.s. of this equation we have dropped the term arising from the noise on 
the target function alone, which is simply u2 , and we shall follow this convention 
throughout . The 'response function' Gis [10, 11] 

G = G(ex, A) = (1 - ex - A + )(1 - ex - A)2 + 4A)/2A. (8) 
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For zero training noise, T = 0, and for any a, the generalization error (7} is mini­
mized when the weight decay is set to A = (T2j its value is then (T2G(a, (T2), which 
is the minimum achievable generalization error [9]. 

3.1 ENSEMBLE GENERALIZATION ERROR 

We now consider an ensemble of K linear students with weight decays Ak and 
learning noises Tk (k = 1 . . . K). Each ,student has an ensemble weight Wk and 
is trained on N ak training examples, with students k and I sharing N akl training 
examples (of course, akk = ak). As above, we consider noisy training data generated 
by a linear target function. The resulting ensemble generalization error can be 
calculated by diagrammatic [10] or response function [11] methods. We refer the 
reader to a forthcoming publication for details and only state the result: 

(9) 

where 

(10) 

Here Pk is defined as Pk = AkG(ak, Ak). The Kronecker delta in the last term 
of (10) arises because the training noises of different students are uncorrelated. The 
generalization errors and ambiguities of the individual students are 

ak = ckk - 2 LWlckl + LWIWmclm; 
I 1m 

the result for the Ck can be shown to agree with the single student result (7). In 
the following sections, we shall explore the consequences of the general result (9) . 
We will concentrate on the case where the training set of each student is sampled 
randomly from the total available data set of size NO', For the overlap of the training 
sets of students k and I (k 'II) one then has akl/a = (ak/a)(al/a) and hence 

ak/ = akal/a (11) 

up to fluctuations which vanish in the thermodynamic limit. For finite ensembles 
one can construct training sets for which akl < akal/a. This is an advantage, 
because it results in a smaller generalization error, but for simplicity we use (11). 

4 LARGE ENSEMBLE LIMIT 

We now use our main result (9) to analyse the generalization performance of an en­
semble with a large number K of students, in particular when the size of the training 
sets for the individual students are chosen optimally. If the ensemble weights Wk 
are approximately uniform (Wk ~ 1/ K) the off-diagonal elements of the matrix 
(ckl) dominate the generalization error for large K, and the contributions from the 
training noises n are suppressed. For the special case where all students are iden­
tical and are trained on training sets of identical size, ak = (1 - c)a, the ensemble 
generalization error is shown in Figure 1(left). The minimum at a nonzero value 
of c, which is the fraction of the total data set held out for testing each student, 
can clearly be seen. This confirms our intuition: when the students are trained 
on smaller, less overlapping training sets, the increase in error of the individual 
students can be more than offset by the corresponding increase in ambiguity. 

The optimal training set sizes ak can be calculated analytically: 

_ 1 - Ak/(T2 
Ck = 1 - ak/a = 1 + G(a, (T2) ' (12) 
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Figure 1: Generalization error and ambiguity for an infinite ensemble of identical 
students. Solid line: ensemble generalization error, fj dotted line: average gener­
alization error of the individual students, l; dashed line: ensemble ambiguity, a. 
For both plots a = 1 and (72 = 0.2 . The left plot corresponds to under-regularized 
students with A = 0.05 < (72. Here the generalization error of the ensemble has 
a minimum at a nonzero value of c. This minimum exists whenever>' < (72. The 
right plot shows the case of over-regularized students (A = 0.3 > (72), where the 
generalization error is minimal at c = O. 

The resulting generalization error is f = (72G(a, (72) + 0(1/ K), which is the globally 
minimal generalization error that can be obtained using all available training data, 
as explained in Section 3. Thus, a large ensemble with optimally chosen training 
set sizes can achieve globally optimal generalization performance. However, we see 
from (12) that a valid solution Ck > 0 exists only for Ak < (72, i.e., if the ensemble 
is under-regularized. This is exemplified, again for an ensemble of identical stu­
dents, in Figure 1 (right) , which shows that for an over-regularized ensemble the 
generalization error is a: monotonic function of c and thus minimal at c = o. 
We conclude this section by discussing how the adaptation of the training set sizes 
could be performed in practice, for simplicity confining ourselves to an ensemble of 
identical students, where only one parameter c = Ck = 1- ak/a has to be adapted. 
If the ensemble is under-regularized one expects a minimum of the generalization 
error for some nonzero c as in Figure 1. One could, therefore, start by training 
all students on a large fraction of the total data set (corresponding to c ~ 0), and 
then gradually and randomly remove training examples from the students' training 
sets. Using (6), the generalization error of each student could be estimated by 
their performance on the examples on which they were not trained, and one would 
stop removing training examples when the estimate stops decreasing. The resulting 
estimate of the generalization error will be slightly biased; however, for a large 
enough ensemble the risk of a strongly biased estimate from systematically testing 
all students on too 'easy' training examples seems small, due to the random selection 
of examples. 

5 REALISTIC ENSEMBLE SIZES 

We now discuss some effects that occur in learning with ensembles of 'realistic' sizes. 
In an over-regularized ensemble nothing can be gained by making the students more 
diverse by training them on smaller, less overlapping training sets. One would also 
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Figure 2: The generalization error of 
an ensemble with 10 identical stu­
dents as a function of the test set 
fraction c. From bottom to top the 
curves correspond to training noise 
T = 0,0.1,0.2, ... ,1.0. The star on 
each curve shows the error of the op­
timal single perceptron (i. e., with op­
timal weight decay for the given T) 
trained on all examples, which is in­
dependent of c. The parameters for 
this example are: a = 1, A = 0.05, 
0'2 = 0.2. 
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expect this kind of 'diversification' to be unnecessary or even counterproductive 
when the training noise is high enough to provide sufficient 'inherent' diversity of 
students. In the large ensemble limit, we saw that this effect is suppressed, but 
it does indeed occur in finite ensembles. Figure 2 shows the dependence of the 
generalization error on c for an ensemble of 10 identical, under-regularized students 
with identical training noises Tk = T. For small T, the minimum of f. at nonzero c 
persists. For larger T, f. is monotonically increasing with c, implying that further 
diversification of students beyond that caused by the learning noise is wasteful. The 
plot also shows the performance of the optimal single student (with A chosen to 
minimize the generalization error at the given T), demonstrating that the ensemble 
can perform significantly better by effectively averaging out learning noise. 

For realistic ensemble sizes the presence of learning noise generally reduces the 
potential for performance improvement by choosing optimal training set sizes. In 
such cases one can still adapt the ensemble weights to optimize performance, again 
on the basis of the estimate of the ensemble generalization error (6). An example is 
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Figure 3: The generalization error of an ensemble of 10 students with different 
weight decays (marked by stars on the 0'2-axis) as a function of the noise level 
0'2. Left: training noise T = 0; right: T = 0.1. The dashed lines are for the 
ensemble with uniform weights, and the solid line is for optimized ensemble weights. 
The dotted lines are for the optimal single perceptron trained on all data. The 
parameters for this example are: a = 1, c = 0.2. 
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shown in Figure 3 for an ensemble of size 1< = 10 with the weight decays >'k equally 
spaced on a logarithmic axis between 10-3 and 1. For both of the temperatures T 
shown, the ensemble with uniform weights performs worse than the optimal single 
student. With weight optimization, the generalization performance approaches that 
of the optimal single student for T = 0, and is actually better at T = 0.1 over 
the whole range of noise levels rr2 shown. Even the best single student from the 
ensemble can never perform better than the optimal single student, so combining the 
student outputs in a weighted ensemble average is superior to simply choosing the 
best member of the ensemble by cross-validation, i.e., on the basis of its estimated 
generalization error. The reason is that the ensemble average suppresses the learning 
noise on the individual students. 

6 CONCLUSIONS 

We have studied ensemble learning in the simple, analytically solvable scenario of 
an ensemble of linear students. Our main findings are: In large ensembles, one 
should use under-regularized students in order to maximize the benefits of the 
variance-reducing effects of ensemble learning. In this way, the globally optimal 
generalization error on the basis of all the available data can be reached by optimiz­
ing the training set sizes of the individual students. At the same time an estimate 
of the generalization error can be obtained. For ensembles of more realistic size, we 
found that for students subjected to a large amount of noise in the training process 
it is unnecessary to increase the diversity of students by training them on smaller, 
less overlapping training sets. In this case, optimizing the ensemble weights can 
still yield substantially better generalization performance than an optimally chosen 
single student trained on all data with the same amount of training noise. This 
improvement is most insensitive to changes in the unknown noise levels rr2 if the 
weight decays of the individual students cover a wide range. We expect most of these 
conclusions to carryover, at least qualitatively, to ensemble learning with nonlinear 
models, and this correlates well with experimental results presented in [7]. 
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