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Abstract 

Second order properties of cost functions for recurrent networks 
are investigated. We analyze a layered fully recurrent architecture, 
the virtue of this architecture is that it features the conventional 
feedforward architecture as a special case. A detailed description of 
recursive computation of the full Hessian of the network cost func
tion is provided. We discuss the possibility of invoking simplifying 
approximations of the Hessian and show how weight decays iron the 
cost function and thereby greatly assist training. We present tenta
tive pruning results, using Hassibi et al.'s Optimal Brain Surgeon, 
demonstrating that recurrent networks can construct an efficient 
internal memory. 

1 LEARNING IN RECURRENT NETWORKS 

Time series processing is an important application area for neural networks and 
numerous architectures have been suggested, see e.g. (Weigend and Gershenfeld, 94). 
The most general structure is a fully recurrent network and it may be adapted using 
Real Time Recurrent Learning (RTRL) suggested by (Williams and Zipser, 89). By 
invoking a recurrent network, the length of the network memory can be adapted to 
the given time series, while it is fixed for the conventional lag-space net (Weigend 
et al., 90). In forecasting, however, feedforward architectures remain the most 
popular structures; only few applications are reported based on the Williams&Zipser 
approach. The main difficulties experienced using RTRL are slow convergence and 
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lack of generalization. Analogous problems in feedforward nets are solved using 
second order methods for training and pruning (LeCun et al., 90; Hassibi et al., 
92; Svarer et al., 93). Also, regularization by weight decay significantly improves 
training and generalization. In this work we initiate the investigation of second order 
properties for RTRL; a detailed calculation scheme for the cost function Hessian is 
presented, the importance of weight decay is demonstrated, and preliminary pruning 
results using Hassibi et al.'s Optimal Brain Surgeon (OBS) are presented. We find 
that the recurrent network discards the available lag space and constructs its own 
efficient internal memory. 

1.1 REAL TIME RECURRENT LEARNING 

The fully connected feedback nets studied by Williams&Zipser operate like a state 
machine, computing the outputs from the internal units according to a state vector 
z(t) containing previous external inputs and internal unit outputs. Let x(t) denote 
a vector containing the external inputs to the net at time t, and let y(t) denote a 
vector containing the outputs of the units in the net. We now arrange the indices 
on x and y so that the elements of z(t) can be defined as 

, k E I 
, k E U 

where I denotes the set of indices for which Zk is an input, and U denotes the set of 
indices for which Zk is the output of a unit in the net. Thresholds are implemented 
using an input permanently clamped to unity. The k'th unit in the net is now 
updated according to 

where Wkj denotes the weight to unit k from input/unit j and "'0 is the activation 
function of the k'th unit. 

When used for time series prediction, the input vector (excluding threshold) is 
usually defined as x(t) = [x(t), . .. , x(t - L + 1)] where L denotes the dimension of 
the lag space. One of the units in the net is designated to be the output unit Yo, and 
its activating function 10 is often chosen to be linear in order to allow for arbitrary 
dynamical range. The prediction of x(t + 1) is x(t + 1) = lo[so(t»). Also, if the first 
prediction is at t = 1, the first example is presented at t = 0 and we 'set y(O) = O. 
We analyse here a modification of the standard Williams&Zipser construction that 
is appropriate for forecasting purposes. The studied architecture is layered. Firstly, 
we remove the external inputs from the linear output unit in order to prevent the 
network from getting trapped in a linear mode. The output then reads 

x(t + 1) = Yo(t + 1) = L WojYj(t) + Wthres,o (1) 
jeU 

Since y(O) = 0 we obtain a first prediction yielding x(l) = Wthres,o which is likely 
to be a poor prediction, and thereby introducing a significant error that is fed 
back into the network and used in future predictions. Secondly, when pruning 
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a fully recurrent feedback net we would like the net to be able to reduce to a 
simple two-layer feedforward net if necessary. Note that this is not possible with 
the conventional Williams&Zipser update rule, since it doesn't include a layered 
feedforward net as a special case. In a layered feedforward net the output unit is 
disconnected from the external inputs; in this case, cf. (1) we see that x(t + 1) is 
based on the internal 'hidden' unit outputs Yk(t) which are calculated on the basis 
of z(t - 1) and thereby x(t -1). Hence, besides the startup problems, we also get 
a two-step ahead predictor using the standard architecture. 

In order to avoid the problems with the conventional Williams&Zipser update 
scheme we use a layered updating scheme inspired by traditional feedforward nets, 
in which we distinguish between hidden layer units and the output unit. At time t, 
the hidden units work from the input vector zh(t) 

, k E I 
, kE U 
, k=O 

where I denotes the input indices, U denotes the hidden layer units and 0 the 
output unit. Further, we use superscripts hand 0 to distinguish between hidden 
unit and output units. The activation of the hidden units is calculated according 
to 

y~(t) = fr[s~(t)] = fr [ L Wki zJ (t)] , k E U 
ie1uUuO 

(2) 

The hidden unit outputs are forwarded to the output unit, which then sees the 
input vector zkCt) 

OCt) _ { y~(t) 
Zk - yO(t-1) 

and is updated according to 

, k E U 
k=O 

(3) 

The cost function is defined as C = E + wTRw. R is a regularization matrix, w is 
the concatenated set of parameters, and the sum of squared errors is 

1 T 

E = 2 L[e(t)F , e(t) = x(t) - yO(t), 
t=l 

(4) 

where T is the size of the training set series. RTRL is based on gradient descent in 
the cost function, here we investigate accelerated training using Newton methods. 
For that we need to compute first and second derivatives of the cost function. The 
essential difficulty is to determine derivatives of the sum of squared errors: 

aE = _ {-.. e(t) ayO(t) 
aw· · L...J aw .. 

'3 t=l '3 

(5) 
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The derivative of the output unit is computed as 
8yO(t) 8r[sO(t)] 8s0(t) --- ._-
8Wij 8so(t) 8Wij 

(6) 

where 
8s0(t) _ 1: . O(t) "" . 8yjl(t) 8yO(t - 1) 
-8-- - UO,Zj + L- WOJI 8 + woo 8 

Wij j/EU Wij Wij 
(7) 

where 6j k is the Kronecker delta. This expression contains the derivative of the 
hidden units 

(8) 

where 

(9) 

... 
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Figure 1: Cost function dependence of a weight connecting two hidden units for 
the sunspot benchmark series. Left panel: Cost function with small weight decay, 
the (local) optimum chosen is marked by an asterix. Right panel: The same slice 
through the cost function but here retrained with higher weight decay. 

The complexity of the training problem for the recurrent net using RTRL is demon
strated in figure 1. The important role of weight decay (we have used a simple weight 
decay R = at) in controlling the complexity of the cost function is evident in the 
right panel of figure 1. The example studied is the sunspot benchmark problem 
(see e.g. (Weigend et al., 90) for a definition). First, we trained a network with 
the small weight decay and recorded the left panel result. Secondly, the network 
was retrained with increased weight decay and the particular weight connecting 
two hidden units was varied to produce the right panel result. In both cases all 
other weights remained fixed at their optimal values for the given weight decay. In 
addition to the complexity visible in these one-parameter slices of the cost func
tion, the cost function is highly anisotropic in weight space and consequently the 
network Hessian is ill-conditioned. Hence, gradient descent is hampered by slow 
con vergen ce. 
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2 SECOND ORDER PROPERTIES OF THE COST 
FUNCTION 
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To improve training by use of Newton methods and for use in OBS-pruning we 
compute the second derivative of the error functional: 

82 E = _ t [e(t) 82yO(t) _ 8yO(t) . 8yO (t)] 
8Wij8wpq t=l 8Wij8wpq 8Wij 8wpq 

(10) 

The second derivative of the output is 

82yO(t) _ 82 r[sO(t)] 8s0(t) 8s0(t) 8r[sO(t)] 82 SO(t) --....:.....:.- - . -- . --+ . ----:...;....;..-
8wij 8wpq 8so(t)2 8Wij 8wpq 8so(t) 8Wij8wpq 

(11) 

with 

82so(t) _, 8zJ(t) ~ 82yj,(t) 82yO(t - 1) 8z~(t) 
8 8 - Ooi-O-- + ~ Woj' + woo + Dop--

Wij Wpq Wpq j'EU 8wij8wpq 8wij 8wpq 8Wij 
(12) 

This expression contains the second derivative of the hidden unit outputs 

82yi(t) _ 82 fr[si(t)] . 8si(t) . 8si(t) + 8fr[si(t)]. 02si(t) (13) 
OWijOWpq - osi(t)2 OWij OWpq osi(t) OWijOWpq 

with 

02si(t) _ ozj(t) ~ 02yj,(t - 1) 02 yO(t - 1) oz~(t) (14) 
- Dki -0-- + L..J Wkj I + Wko + Dkp 0 

8WijOWpq Wpq j'EU OWijOWpq OWijOWpq Wij 

Recursion in the five index quantity (14) imposes a significant computational bur
den; in fact the first term of the Hessian in (10), involving the second derivative, is 
often neglected for computational convenience (LeCun et al., 90). Here we start by 
analyzing the significance of this term during training. We train a layered architec
ture to predict the sunspot benchmark problem. In figure 2 the ratio between the 
largest eigenvalue of the second derivative term in (10) and the largest eigenvalue 
of the full Hessian is shown. The ratio is presented for two different magnitudes of 
weight decay. In line with our observations above the second order properties of the 
"ironed" cost function are manageable, and we can simplify the Hessian calcula
tion by neglecting the second derivative term in (10), i.e., apply the Gauss-Newton 
approximation. 

3 PRUNING BY THE OPTIMAL BRAIN SURGEON 

Pruning of recurrent networks has been pursued by (Giles and Omlin, 94) using 
a heuristic pruning technique, and significant improvement in generalization for a 
sequence recognition problem was demonstrated. Two pruning schemes are based 
on systematic estimation of weight saliency: the Optimal Brain Damage (OBD) 
scheme of (LeCun et al., 90) and OBS by (Hassibi et al., 93). OBD is based 
on the diagonal approximation of the Hessian and is very robust for forecasting 
(Svarer et al., 93). If an estimate of the full Hessian is available OBS can be used 



678 Morten With Pedersen, Lars Kai Hansen 

10' 

.. :.::.: .... :::::;:;::: ... :::: . 
. '" 

10 ... '----!-10--f::20--:30~----! .. :---~50--.. ~---:::70:----=1O 1040''-----:'10--f::20--:30~----! .. :---~50,----.. ~---:70~---:!IO 
ITERATION. ITERATION. 

Figure 2: Ratio between the largest magnitude eigenvalue of the second derivative 
term of the Hessian (c.f. equation (10)) and the largest magnitude .eigenvalue of 
the complete Hessian as they appeared during ten training sessions. The connected 
circles represent the average ratio. Left panel: Training with small weight decay. 
Right panel: Training with a high weight decay. 

for estimation of saliencies incorporating linear retraining. In (Hansen and With 
Pedersen, 94) OBS was generalized to incorporate weight decays; we use these 
modifications in our experiments. Note that OBS in its standard form only allows 
for one weight to be eliminated at a time. The result of a pruning session is a 
nested family of networks. In order to select the optimal network within the family 
it was suggested in (Svarer et al., 93.) to use the estimated test error. In particular 
we use Akaike's Final Prediction Error (Akaike, 69) to estimate the network test 
error Etest = «(T + N)/(T - N» . 2E/T 1, and N is the number of parameters 
in the network. In figure 3 we show the results of such a pruning session on the 
sunspot data starting from a (4-4-1) network architecture. The recurrent network 
was trained using a damped Gauss-Newton scheme. Note that the training error 
increases as weights are eliminated, while the test error and the estimated test error 
both pass through shallow minima showing that generalization is slightly improved 
by pruning. In fact, by retraining the optimal architecture with reduced weight 
decay both training and test errors are decreased in line with the observations in 
(Svarer et al., 93). It is interesting to observe that the network, though starting 
with access to a lag-space of four delay units, has lost three of the delayed inputs; 
hence, rely solely on its internal memory, as seen in the right panel of. figure 3. To 
further illustrate the memory properties of the optimal network, we show in figure 
4 the network response to a unit impulse. It is interesting that the response of the 
network extends for approximately 12 time steps corresponding to the "period" of 
the sunspot series. 

lThe use of Akaike's estimate is not well justified for a feedback net, test error estimates 
for feedback models is a topic of current research. 
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Figure 3: Left panel: OBS pruning of a (4-4-1) recurrent network trained on sunspot 
benchmark. Development of training error, test error, and Akaike estimated test 
error (FPE). Right panel: Architecture of the FPE-optimal network. Note that the 
network discards the available lag space and solely predicts from internal memory. 
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Figure 4: Left panel: Output of the pruned network after a unit impulse input at 
t = O. The internal memory is about 12 time units long which is, in fact, roughly 
the period of the sunspot series. Right panel: Activity of the four hidden units in 
the pruned network after a unit impUlse at time t = O. 

4 CONCLUSION 

A layered recurrent architecture, which has a feedforward net as a special case, has 
been investigated. A scheme for recursive estimation of the Hessian of the fully 
recurrent neural net is devised . It's been shown that weight decay plays a decisive 
role when adapting recurrent networks. Further, it is shown that the' second order 
information may be used to train and prune a recurrent network and in this process 
the network may discard the available lag space. The network builds an efficient 
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internal memory extending beyond the lag space that was originally available. 
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