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Abstract 

We describe a framework for learning saccadic eye movements using a 
photometric representation of target points in natural scenes. The rep
resentation takes the form of a high-dimensional vector comprised of the 
responses of spatial filters at different orientations and scales. We first 
demonstrate the use of this response vector in the task of locating pre
viously foveated points in a scene and subsequently use this property in 
a multisaccade strategy to derive an adaptive motor map for delivering 
accurate saccades. 

1 Introduction 

There has been recent interest in the use of space-variant sensors in active vision systems 
for tasks such as visual search and object tracking [14]. Such sensors realize the simultane
ous need for wide field-of-view and good visual acuity. One popular class of space-variant 
sensors is formed by log-polar sensors which have a small area near the optical axis of 
greatly increased resolution (the fovea) coupled with a peripheral region that witnesses 
a gradual logarithmic falloff in resolution as one moves radially outward. These sensors 
are inspired by similar structures found in the primate retina where one finds both a 
peripheral region of gradually decreasing acuity and a circularly symmetric area centmlis 
characterized by a greater density of receptors and a disproportionate representation in 
the optic nerve [3]. The peripheral region, though of low visual acuity, is more sensitive 
to light intensity and movement. 

The existence of a region optimized for discrimination and recognition surrounded by a 
region geared towards detection thus allows the image of an object of interest detected 
in the outer region to be placed on the more analytic center for closer scrutiny. Such a 
strategy however necessitates the existence of (a) methods to determine which location 
in the periphery to foveate next, and (b) fast gaze-shifting mechanisms to achieve this 
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foveation. In the case of humans, the "where-to-Iook-next" issue is addressed by both 
bottom-up strategies such as motion or salience clues from the periphery as well as top
down strategies such as search for a particular form or color. Gaze-shifting is accomplished 
via very rapid eye movements called saccades. Due to their high velocities, guidance 
through visual feedback is not possible and hence, saccadic movement is preprogrammed 
or ballistic: a pattern of muscle activation is calculated in advance that will direct the 
fovea almost exactly to the desired position [3]. 

In this paper, we describe an iconic representation of scene points that facilitates top
down foveal targeting. The representation takes the form of a high-dimensional vector 
comprised of the responses of different order Gaussian derivative filters, which are known 
to form the principal components of natural images [5], at variety of orientations and 
scales. Such a representation has been recently shown to be useful for visual tasks ranging 
from texture segmentation [7] to object indexing using a sparse distributed memory [11]. 
We describe how this photometric representation of scene points can be used in locating 
previously foveated points when a log-polar sensor is being used. This property is then 
used in a simple learning strategy that makes use of multiple corrective saccades to 
adaptively form a retinotopic motor map similar in spirit to the one known to exist in 
the deep layers of the primate superior colliculus [13]. Our approach differs from previous 
strategies for learning motor maps (for instance, [12]) in that we use the visual modality 
to actively supply the necessary reinforcement signal required during the motor learning 
step (Section 3.2) . 

2 The Multiscale Spatial Filter Representation 

In the active vision framework, vision is seen as subserving a larger context of the encom
passing behaviors that the agent is engaged in. For these behaviors, it is often possible 
to use temporary, iconic descriptions of the scene which are only relatively insensitive 
to variations in the view. Iconic scene descriptions can be obtained, for instance, by 
employing a bank of linear spatial filters at a variety of orientations and scales. In our 
approach, we use derivative of Gaussian filters since these are known to form the domi
nant eigenvectors of natural images [5] and can thus be expected to yield reliable results 
when used as basis functions for indexingl . 

The exact number of Gaussian derivative basis functions used is motivated by the need 
to make the representations invariant to rotations in the image plane (see [11] for more 
details). This invariance can be achieved by exploiting the property of steerability [4] 
which allows filter responses at arbitrary orientations to be synthesized from a finite set 
of basis filters. In particular, our implementation uses a minimal basis set of two first
order directional derivatives at 0° and 90°, three second-order derivatives at 0°, 60° and 
120°, and four third-order derivatives oriented at 0°, 45°, 90°, and 135°. 

The response of an image patch J centered at (xo, Yo) to a particular basis filter G~j can 
be obtained by convolving the image patch with the filter : 

g . If 9 ri,j(XO, Yo) = (G/ * I)(xo, Yo) = G/ (XO - x, Yo - y)J(x, y)dx dy (1) 

lIn addition, these filters are endorsed by recent physiological studies [15] which show that 
derivative-of-Gaussians provide the best fit to primate cortical receptive field profiles among the 
different functions suggested in the literature. 
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The iconic representation for the local image patch centered at (xo, Yo) is formed by 
combining into a single high-dimensional vector the responses from the nine basis filters, 
each (in our current implementation) at five different scales: 

r(xo, Yo) = (ri,j,s) , i = 1,2, 3;j = 1, . .. , i + 1; S = Smin , . .. , Smax (2) 

where i denotes the order of the filter, j denotes the number of filters per order, and S 

denotes the number of different scales. 

The use of multiple scales increases the perspicuity of the representation and allows inter
polation strategies for scale invariance (see [9] for more details). The entire representation 
can be computed using only nine convolutions done at frame-rate within a pipeline image 
processor with nine constant size 8 x 8 kernels on a five-level octave-separated low-pass
filtered pyramid of the input image. 

The 45-dimensional vector representation described above shares some of the favorable 
matching properties that accrue to high-dimensional vectors (d. [6]). In particular, the 
distribution of distances between points in the 45-dimensional space of these vectors 
approximates a normal distribution; most of the points in the space lie at approximately 
the mean distance and are thus relatively uncorrelated to a given point [11]. As a result, 
the multiscale filter bank tends to generate almost unique location-indexed signatures of 
image regions which can tolerate considerable noise before they are confused with other 
image regions. 

2.1 Localization 

Denote the response vector from an image point as fi and that from a previously foveated 
model point as Tm. Then one metric for describing the similarity between the two points 
is simply the square of the Euclidean distance (or the sum-of-squared-differences) between 
their response vectors dim = llfi - r.n 112 . The algorithm for locating model points in a 
new scene can then be described as follows : 

1. For the response vector representing a model point m, create a distance image 
I m defined by 

Im(x,y) = min [Imax - t3dim , 0] (3) 

where t3 is a suitably chosen constant (this makes the best match the brightest 
point in Im). 

2. Find the best match point (Xb~, Yb~) in the image using the relation 

(4) 

Figure 1 shows the use of the localization algorithm for targeting the optical axis of a 
uniform-resolution sensor in an example scene. 

2.2 Extension to Space-Variant Sensing 

The localization algorithm as presented above will obviously fail for sensors exhibiting 
nonuniform resolution characteristics. However, the multiscale structure of the response 
vectors can be effectively exploited to obtain a modified localization algorithm. Since 
decreasing radial resolution results in an effective reduction in scale (in addition to some 
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(a) (b) (c) (d) 

Figure 1: Using response vectors to saccade to previously foveated positions. (a) Initial gaze 
point. (b) New gaze point; (c) To get back to the original point, the "distance image" is 
computed: the brightest spot represents the point whose response vector is closest to that of the 
original gaze point; (d) Location of best match is marked and an oculomotor command at that 
location can be executed to foveate that point. 

other minor distortions) of previously foveated regions as they move towards the periph
ery, the filter responses previously occuring at larger scales now occur at smaller scales. 
Responses usually vary smoothly between scales; it is thus possible to establish a corre
spondence between the two response vectors of the same point on an object imaged at 
different scales by using a simple interpolate-and-eompare scale matching strategy. That 
is, in addition to comparing an image response vector and a model response vector di
rectly as outlined in the previous section, scale interpolated versions of the image vector 
are also compared with the original model response vector. In the simplest case, interpo
lation amounts to shifting image response vectors by one scale and thus, responses from a 
new image are compared with original model responses at second, third, .. , scales, then 
with model responses at third, fourth, ... scales, and so on upto some threshold scale. 
This is illustrated in Figure 2 for two discrete movements of a simulated log-polar sensor. 

3 The M ultisaccade Learning Strategy 

Since the high speed of saccades precludes visual guidance, advance knowledge of the 
precise motor command to be sent to the extraocular muscles for fixation of a desired 
retinal location is required. Results from neurophysiological and psychophysical studies 
suggest that in humans, this knowledge is acquired via learning: infants show a gradual 
increase in saccadic accuracy during their first year [1, 2] and adults can adapt to changes 
(caused for example by weakening of eye-muscles) in the interrelation between visual input 
and the saccades needed for centering. An adaptive mechanism for automatically learning 
the transfer function from retinal image space into motor space is also desirable in the 
context of active vision systems since an autonomous calibration of the saccadic system 
would (a) avoid the need for manual calibration, which can sometimes be complicated, 
and (b) provide resilience amidst changing circumstances caused by, for instance, changes 
in the camera lens mechanisms or degradation of the motor apparatus. 

3.1 Motor Maps 

In primates, the superior eollieulus (SC), a multilayered neuron complex located in the 
upper regions of the brain stem, is known to playa crucial role in the saccade generation 
[13]. The upper layers of the SC contain a retinotopie sensory map with inputs from 
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Figure 2: Using response vectors with a log-polar sensor, (a) through (c) represent a sequence of 
images (in Cartesian coordinates) obtained by movement of a simulated log-polar sensor from an 
original point (marked by '+') in the foveal region (indicated by a circle) towards the right. (d) 
depicts the process of interpolating (in this case, shifting) and matching response vectors of the 
same point as it moves towards the periphery of the sensor (Positive responses are represented 
by proportional upward bars and negative ones by proportional downward bars with the nine 
smallest scale responses at the beginning and the nine largest ones at the end). 

the retina while the deeper layers contain a motor map approximately aligned with the 
sensory map. The motor map can be visualized as a topologically-organized network 
of neurons which reacts to a local activation caused by an input signal with a vectorial 
output quantity that can be transcoded into a saccadic motor command. 

The alignment of the sensory and motor maps suggests the following convenient strategy 
for foveation: an excitation in the sensory layer (signaling a foveal target) is transferred 
to the underlying neurons in the motor layer which deliver the required saccade. In our 
framework, the excitation in the sensory layer before a goal-directed saccade corresponds 
to the brightest spot (most likely match) in the distance image (Figure 1 (c) for example), 
The formation of sensory map can be achieved using Kohonen's well-known stochastic 
learning algorithm by using a Gaussian input density function as described in [12]. Our 
primary interest lies not in the formation of the sensory map but in the development 
of a learning algorithm that assigns appropriate motor vectors to each location in the 
corresponding retinotopically-organized motor map. In particular, our algorithm employs 
a visual reinforcement signal obtained using iconic scene representations to determine the 
error vector during the learning step. 

3.2 Learning the Motor Map 

Our multisaccade learning strategy is inspired by the following observations in [2] : During 
the first few weeks after birth, infants appear to fixate randomly. At about 3 months of 
age, infants are able to fixate stimuli albeit with a number of corrective saccades of 
relatively large dispersion. There is however a gradual decrease in both the dispersion 
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and the number of saccades required for foveation in subsequent months (Figure 3 (a) 
depicts a sample set of fixations). After the first year, saccades are generally accurate, 
requiring at most one corrective saccade2 • 

The learning method begins by assigning random values to the motor vectors at each 
location. The response vector for the current fixation point is first stored and a random 
saccade is executed to a different point. The goal then is to refixate the original point 
with the help of the localization algorithm and a limited number of multiple corrective 
saccades. The algorithm keeps track of the motor vector with minimum error during 
each run and updates the motor vectors for the neighborhood around the original unit 
whenever an improvement is observed. The current run ends when either the original 
point was successfully foveated or the limit MAX for the maximum number of allowable 
corrective saccades was exceeded. A more detailed outline of the algorithm is as follows: 

1. Initialize the motor map by assigning random values (within an appropriate 
range) to the saccadic motor vectors at each location. Align the optical axis 
of the sensor so that a suitable salient point falls on the fovea. Initialize the run 
number to t := O. 

2. Store in memory the filter response vector of the point p currently in the center 
of the foveal region. Let t := t + 1. 

3. Execute a random saccade to move the fovea to a different location in the scene. 

4. Use the localization algorithm described in Section 2.2 and the stored response 
vector to find the location [ of the previously foveated point in the current retinal 
image. Execute a saccade using the motor vector St stored in this location in the 
motor map. 

5. If the currently foveated region contains the original point p, return to 2 (SI is 
accurate); otherwise, 

(a) Initialize the number of corrective saccades N := 0 and let s:= St. 
(b) Determine the new location /' of p in the new image as in (4) and let emin be 

the error vector, i.e. the vector from the foveal center to /', computed from 
the output of the localization algorithm. 

(c) Execute a saccade using the motor vector Stl stored at [' and let ebe the error 
vector (computed from the output of the localization algorithm) from the 
foveal center to the new location [II of point p found as in 4. Let N := N + 1 
and let s:= s+ SI' . 

(d) If lie'll < lliminll, then let emin := e and update the motor vectors for the 
units k given by the neighborhood function N(l, t) according to the well
known Kohonen rule: 

(5) 

where 'Y(t) is an appropriate gain function (0 < 'Y(t) < 1). 
(e) If the currently foveated region contains the original point p, return to 2; 

otherwise, if N < MAX, then determine the new location [' of p in the new 
image as in (4) and go to 5(c) (i.e. execute the next saccade); otherwise, 
return to 2. 

2Large saccades in adults are usually hypometric i.e. they undershoot, necessitating a slightly 
slower corrective saccade. There is currently no universally accepted explanation for the need 
for such a two-step strategy. 
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Figure 3: (a) Successive saccades executed by a 3-month old (left) and a 5-month old (right) 
infant when presented with a single illuminated stimulus (Adapted from [2]) . (b) Graph showing 
% of saccades that end directly in the fovea plotted against the number of iterations of the 
learning algorithm for different values of MAX. (c) An enlarged portion of the same graph 
showing points when convergence was achieved. 

The algorithm continues typically until convergence or the completion of a maximum 
number of runs. The gain term -y(t) and the neighborhood N(l, t) for any location l are 
gradually decreased with increasing number of iterations t. 

4 Results and Discussion 

The simulation results for learning a motor map comprising of 961 units are shown in 
Figures 3 (b) and (c) which depict the variation in saccadic accuracy with the number of 
iterations of the algorithm for values of MAX (maximum number of corrective saccades) 
of 1, 5 and 10. From the graphs, it can be seen that starting with an initially random 
assignment of vectors, the algorithm eventually assigns accurate saccadic vectors to all 
units. Fewer iterations seem to be required if more corrective saccades are allowed but 
then each iteration itself takes more time. 

The localization algorithm described in Section 2.1 has been implemented on a Datacube 
MaxVideo 200 pipeline image processing system and takes 1-2 seconds for location of 
points. Current work includes the integration of the multisaccade learning algorithm de
scribed above with the Datacube implementation and further evaluation of the learning 
algorithm. One possible drawback of the proposed algorithm is that for large retinal 
spaces, learning saccadic motor vectors for every retinal location can be time-consuming 
and in some cases, even infeasible [1]. In order to address this problem, we have recently 
proposed a variation of the current learning algorithm which uses a sparse motor map 
in conjunction with distributed coding of the saccadic motor vectors. This organization 
bears some striking similarities to Kanerva's sparse distributed memory model [6] and is 
in concurrence with recent neurophysiological evidence [8] supporting a distributed popu
lation encoding of saccadic movements in the superior colliculus. We refer the interested 
reader to [10] for more details. 
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