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Abstract 

In this study, an integrated neural network control architecture for nonlinear dynamic systems is 
presented. Most of the recent emphasis in the neural network control field has no error feedback as the 
control input, which rises the lack of adaptation problem. The integrated architecture in this paper 
combines feed forward control and error feedback adaptive control using neural networks. The paper 
reveals the different internal functionality of these two kinds of neural network controllers for certain 
input styles, e.g., state feedback and error feedback. With error feedback, neural network controllers 
learn the slopes or the gains with respect to the error feedback, producing an error driven adaptive 
control systems. The results demonstrate that the two kinds of control scheme can be combined to 
realize their individual advantages. Testing with disturbances added to the plant shows good tracking 
and adaptation with the integrated neural control architecture. 

1 INTRODUCTION 

Neural networks are used for control systems because of their capability to approximate nonlinear 
system dynamics. Most neural network control architectures originate from work presented by 
Narendra[I), Psaltis[2) and Lightbody[3) . In these architectures, an identification neural network is 
trained to function as a model for the plant. Based on the neural network identification model, a neural 
network controller is trained by backpropagating the error through the identification network. After 
training, the identification network is replaced by the real plant. As is illustrated in Figure 1, the 
controller receives external inputs as well as plant state feedback inputs. Training procedures are 
employed such that the networks approximate feed forward control surfaces that are functions of 
external inputs and state feedbacks of the plant (or the identification network during training). 

It is worth noting that in this architecture, the error between the plant output and the desired output of 
the reference model is not fed back to the controller, after the training phase. In other words, this error 
information is ignored when the neural network applies its control. It is well known in control theory 
that the error feedback plays a significant role in adaptation. Therefore, when model uncertainty or 
noise/disturbances are present, a feed forward neural network controller with only state feedback will 
not adaptively update the control signal. On line training for the neural controller has been proposed to 
obtaip adaptive ability[I)[3). However, the stability for the on line training of the neural network 
controller is unresolved[1][4] . 

In this study, an additional nonlinear recurrent network is combined with the feed forward neural 
network controller to form an adaptive controller. This added neural network uses feedback error 
between the reference model output and the plant output as an input In addition, the system's external 
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inputs and the plant states are also input to the feedback network. This architecture is used in the control 
community, but not with neural network components. The approach differs from a conventional error 
feedback controller, such as a gain scheduled PID controller, in that the neural network error feedback 
controller implements a continuous nonlinear gain scheduled hypersurface, and after training, adaptive 
model reference control for nonlinear dynamic systems is achieved without further parameter 
computation. The approach is tested on well-known nonlinear control problems in the neural network 
literature, and good results are obtained. 

2 NEURAL NETWORK CONTROL 

In this section, several different neural network control architectures are presented. In these structures, 
identification neural networks, viewed as accurate models for real plants, are used. 

2.1 NEURAL NETWORK FEED FORWARD CONTROL 

The neural network controllers are trained by backpropagation of errors through a well trained neural 
identification network. In this architecture, the state variable yet) of the system is sent back to the neural 
network, and the external input x(t) also is input to the network. With these inputs, the neural network 
estabJishes a feed forward mapping from the external input x(t) to the control signal u(t). This control 
mapping is expressed as a function of the external input x(t) and the plant state yet) : 

u(t)==j(x(t), yet»~ (1) 

where x(t)=[x(t), x(t-l), .. J, andy(t)=[y(t), y(t-l), . .Y. 
This neural network control architecture is denoted in this study as feed forward neural control even 
though it includes state feedback. Neural control with error feedback is denoted as feedback neural 
control. 

x(t) 
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e(t+ 1) 

Control NN 
y(t+ 1) 

Figure I Neural Network Control Architecture. 
ID NN represents the identification network. 
Ref. Model means reference model, and NN 
means neural network. 
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Figure 2 Neural Network Feedback Control 
Architecture 

y(t+ 1) 

During the training phases, based on the assumption that the neural identification network provides a 
model for the plant, the gradient information needed for error backpropagation is obtained by calculating 
the Jacobian of the identification network. The following equation describes this process for the control 
architecture shown in Figure I . If the cost function is defined as E, then the gradient of the cost function 
with respect to weight w of the neural controller is 
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a E a E a u (a E a u a E J a Yt-l 
a: = a; a w + a u a Yt-l + a Yt-l --a;- (2) 

where u is tbe control signal and YI-1 is tbe plant feedback state. 

After tbe training stage, tbe neural network supplies a control law. Because neural networks have the 
ability to approximate any arbitrary nonlinear functions[5], a feed forward neural network can build a 
nonlinear controller, which is crucial to tbe use of tbe neural network in control engineering. Also, since 
all tbe parameters of the neural network identification model and tbe neural network controller are 
obtained from learning through samples, matbematically untraceable features of tbe plant can be 
extracted from tbe samples and imbedded into tbe control system. 

However, because tbe feed forward controller has no error feedback, tbe controller can not adapt to tbe 
disturbances occurring in tbe plant or tbe reference model. This problem is of substantial importance in 
tbe context of adaptive control. In tbe next subsection, error feedback between tbe reference models 
and tbe plant outputs is introduced into neural network controllers for adaptation. 

2.2 NEURAL ADAPTIVE CONTROL WITH ERROR FEEDBACK 

It is known that feedback errors from the system are important for adaptation. Due to the flexibility of the 
neural network architecture, the error between the reference model and the plant can be sent back to the 
controller as an extra input. In such an architecture, neural networks become nonlinear gain scheduled 
controllers with smooth continuous gains. Figure 2 shows the architecture for the feedback neural control. 

With tbis architecture, tbe neural network control surface is not tbe fixed mapping from tbe x(t) to u(t) 
for each state y(t), but instead it learns tbe slope or tbe gain referring to tbe feedback error e(t) for 
control. This gain is a continuous nonlinear function of tbe external input x(t) and tbe state feedback 
yet). Figure 3 shows tbe recurrent network architecture of tbe feedback neural controller. The output 
node needs to be recurrent because tbe output witbout tbe recurrent link from tbe neural controller is 
only a correction to tbe old control signal, and tbe new control signal should be tbe combination of old 
control signal and tbe correction. The otber nodes of tbe network can be feed forward or recurrent. If 
we denote tbe weight for tbe output node's recurrent link as w., tben tbe output from tbe recurrent link is 
w.u(t-l). The following equation describes the feedback network. 

u(t) = wbu(t-I )+j(X(t), y(t), e(t» (3) 

where j(.) is a nonlinear function established by tbe network for which tbe recurrent link output is not 
included and e(t)=[e(t), e(t-I), ... f 
To compare tbe control gain expression with conventional control theory, consider tbe Taylor series 
expansion of tbe network forward mappingj(.), equation (3) becomes 

u(t) = w.u(t-l) + !'(x(t). yet»~ e(t)+ j"(x(t), yet»~ e2(t)+... (4) 

where f'(x(t), y(t»=[ i1j(x(t), y(t), e(t»/ae(t), aJ!:x(t), y(t), e(t»Ii1e(t-I), ... ]. If high order terms are 
ignored and gO representsf'O, we get 

u(t) = wbu(t-I)+ g(x(t), yet»~ e(t) (5) 
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which is a gain scheduled controller and the gain is the function of external input x(/) and the plant state 
y(/). It is clear that when w.=l.O, g(.) is a constant vector and e(/)=[e(t), e(t-l), e(t-2)]T, the feedback 
neural network controller degenerates to a discrete PID controUer. Because the neural network can 
approximate arbitrary nonlinear functions through learning, the neural network feedback controller can 
generate a nonlinear continuous gain hypersurface. 

Ref. Model 

Figure 3 Feedback Neural Network Controller Figure 4 Integrated NN Control Architeture. 

In the training process, error backpropagating through the identification network is used. The process is 
similar to the training of a feed forward neural controller, but the resulting control surface is completely 
different due to the different inputs. After training, the neural network is able to provide a nonlinear 
control law, that is, the desired model following response can be obtained with fixed controller 
parameters for nonlinear dynamic systems. Traditionally, the control of the nonlinear plant is derived 
from continuous computing of the controller gains. 

This feedback controller is error driven. As long as an error exists, the control signal is updated 
according to the error and the gain. This kind of neural controller is an adaptive controller in principle. 

2.3 INTEGRATED NEURAL NETWORK CONTROLLER 

The characteristics of feed forward and error feedback neural control networks are described in the 
previous subsections. In this section. the two controllers are combined. Figure 4 shows the architecture. 

In this architecture, we include both feed forward and feedback neural network controllers. The control 
signal is the combination from these two networks' outputs. In the training stage, it is our experience 
that the feed forward network should be trained first. The feedback network is not included while 
training the feed forward network. After training the feed forward controller, the error feedback network 
is trained with the feed forward network, but the feed forward networks' weights are unchanged. 
Backpropagating the error through the identification network is applied for the training of both 
networks. 

When training the feedback control network, the feed forward calculation is 

u(t) = ujt)+u/b(t). 

y(t+ 1) = P(x(t), y(t), u(t», 

(6) 

(7) 

where uj/) is the output from the feed forward controller network and u,..(t) is the output from the 
feedback controller network, P(.) is the identification mapping. 
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3 CONTROL ON EXAMPLE PROBLEMS 

In this section, the control architecture described above is applied to a well-known problem from the 
literature[I). The plants and the reference model of the sample problems are described by difference 
equations 

plant: 
yet) 

y(t + 1) = 2 + (u(t) -1.O)u(t)(u(t) + 1.0) 
1.0+ Y (t) 

(II) 

reference model: y(t + 1) = 0.6y(t) + u(t) (12) 

This is a nonlinear time varying dynamic system with no analytical inverse. 

3.1 FEED FORWARD CONTROL 

A feed forward neural network is trained to control the system to follow the reference model. The plant 
state yet) and external inputx(t) are fed to the controller. During the training, the x(t) is randomly 
generated. After training, the controller generates a control signal u(t) such that the plant can follow the 
reference model output. Figure 5 shows the testing result of the reference model output and the 
controlled plant output. The input function is x(t)=sin(21ttf25)+sin(21tt/1O). The controller network 
architecture is (2, 20, 1). 
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Figure 5 Tracking Result From the Feed Forward NN. 
Output of reference (solid line) and plant (dash line). 
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Figure 6 Feed Forward Control Surface 

The output surface of the controller network is shown in Figure 6. By examining the controller output 
surface, we can see that the neural network builds a feed forward mapping from x(t) to u(t). This feed 
forward mapping is also a function of the plant state yet). Under each state, the neural network 
controller accepts input x(t) to produce control signal u(t) such that the plant follows the reference model 
reasonably well. In Figure 6, the x axis is the external input x(t) and the y axis is the plant feedback 
output yet) . The z axis represents the control surface. 

The feed forward controller laCks the ability to adapt to plant uncertainty, noise or changes in the 
reference model. As an example, we apply this feed forward controller to the disturbed plant with a bias 
0.5 added to the original plant. The tracking result is shown in Figure 7. With this slight bias, the plant 
does not follow the reference model. Clearly, the feed forward controller has no adaptive ability to this 
model bias. 
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3.2 FEEDBACK CONTROL 

FtrSt, we compare the neural network feedback controller with fixed gain PID controllers. For many 
nonlinear systems, the fixed gain PID controllers will give poor tracking and continuous adaptation of 
the controller parameters is needed. The neural network approach offers an alternative control approach 
for nonlinear systems. Through the training, control gains, imbedded in the neural network, are 
established as a continuous function of system external inputs x(t) and plant states yet). 

The sample problem in the above section is now employed to describe how the neural network creates a 
nonlinear control gain surface with error feedback and additional inputs. First, we show one simple case 
of neural adaptive feedback controller. This controller can only adapt to the system nonlinearity with a 
fixed linear input pattern. The reason to show this simple adaptation case first is that its control gain 
surface can be illustrated graphically. 

Figure 8 illustrates, for the system in equations (11) and (12) that a fixed gain PI controller fails to track 
the reference model, for even one fixed linear input pattern x(t)=0.2t-2.5, because the plant nonlinearity. 
Figure 9 illustrates the result from a recurrent neural network with feedback error e(t) and x(t) as inputs. 
The neural network is trained by backpropagation error through the identification network. Compared to 
the flXed gain PI controller, the neural network improves the tracking ability significantly. 
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Figure 7 Tracking Result for Shifted Plant, plant 
output (dash line) and reference output (solid line). 
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Figure 8 Reference Model Output (solid line) 
and PID Controlled Plant Output (dashed line) 

The control surface of the updating output fl.) is shown in Figure 10, which is the output from the neural 
network controller without recurrent link (see equation (3». We plot the surface of the updating output 
from the controller with respect to input x(t) and error feed back input e(t). The gain of the controller is 
equivalent to the updating output from the network when error=l.O. As shown in the figure, the gain in 
the neighborhood about x(t)=O changes largely according to the direction of changes in the plant in the 
corresponding region. The updating surface for a PID controller is a plane. The neural network 
implements a nonlinear continuous control gain surface. 

For a more complicated case, we addx(t-I) as another input to the neural network as well as e(t-l), and 
train by error backpropagation through the identification network. These two inputs, x(t) and x(t-I) add 
difference information to the network. The network can adapt to not only different operating regions 
indicated by x(t), but also different input patterns. Figure 11 shows the tracking results with two 
different input patterns. In Figure II (a), input pattern is x(t)=4.0sin(tI4.0). In Figure 11 (b) input 
pattern is x(t)=sin(21t1!25)+sin(21t111O). 






