
On the Computational Utility of
Consciousness

Donald W. Mathis and Michael C. Mozer
mathis@cs.colorado.edu, mozer@cs.colorado.edu

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder

Boulder, CO 80309-0430

Abstract

We propose a computational framework for understanding and
modeling human consciousness. This framework integrates many
existing theoretical perspectives, yet is sufficiently concrete to allow
simulation experiments. We do not attempt to explain qualia (sub­
jective experience), but instead ask what differences exist within
the cognitive information processing system when a person is con­
scious of mentally-represented information versus when that infor­
mation is unconscious. The central idea we explore is that the con­
tents of consciousness correspond to temporally persistent states
in a network of computational modules. Three simulations are de­
scribed illustrating that the behavior of persistent states in the
models corresponds roughly to the behavior of conscious states
people experience when performing similar tasks. Our simulations
show that periodic settling to persistent (i.e., conscious) states im­
proves performance by cleaning up inaccuracies and noise, forcing
decisions, and helping keep the system on track toward a solution.

1 INTRODUCTION

We propose a computational framework for understanding and modeling conscious­
ness. Though our ultimate goal is to explain psychological and brain imaging data
with our theory, and to make testable predictions, here we simply present the frame­
work in the context of previous experimental and theoretical work, and argue that

12 Donald Mathis, Michael C. Mozer

it is sensible from a computational perspective. We do not attempt to explain
qualia-subjective experience and feelings. It is not clear that qualia are amenable
to scientific investigation. Rather, our aim is to understand the mechanisms under­
lying awareness, and their role in cognition. We address three key questions:

• What are the preconditions for a mental representation to reach consciousness?

• What are the computational consequences of a representation reaching conscious­
ness? Does a conscious state affect processing differently than an unconscious state?

• What is the computational utility of consciousness? That is, what is the compu­
tational role of the mechanism(s) underlying consciousness?

2 THEORETICAL FRAMEWORK

Modular Cognitive Architecture. We propose that the human cognitive ar­
chitecture consists of a set of functionally specialized computational modules (e.g.,
Fodor, 1983). We imagine the modules to be organized at a somewhat coarse level
and to implement processes such as visual object recognition, visual word-form
recognition, auditory word and sound recognition, computation of spatial relation­
ships, activation of semantic representations of words, sentences, and visual objects,
construction of motor plans, etc. Cognitive behaviors require the coordination of
many modules. For example, functional brain imaging studies indicate that there
are several brain areas used for different subtasks during cognitive tasks such as
word recognition (Posner & Carr, 1992).

Modules Have Mapping And Cleanup Processes. We propose that mod­
ules perform an associative memory function in their domain, and operate via a
two-stage process: a fast, essentially feedforward input-output mapping1 followed
by a slower relaxation search (Figure 1). The computational justification for this
two stage process is as follows. We assume that, in general, the output space of a
module can represent a large number of states relative to the number of states that
are meaningful or well formed-i.e., states that are interpretable by other modules
or (for output modules) that correspond to sensible motor primitives. If we know
which representations are well-formed, we can tolerate an inaccurate feedforward
mapping, and "clean up" noise in the output by constraining it to be one of the
well-formed states. This is the purpose of the relaxation step: to clean up the
output of the feedforward step, resulting in a well-formed state. The cleanup pro­
cess knows nothing about which output state is the best response to the input;
it acts solely to enforce well-formedness. Similar architectures have been used re­
cently to model various neuropsychological data (Hinton & Shallice, 1991; Mozer &
Behrmann, 1990; Plaut & Shallice, 1993). The empirical motivation for identifying
consciousness with the results of relaxation search comes from studies indicating
that the contents of consciousness tend to be coherent, or well-formed (e.g., Baars,
1988; Crick, 1994; Damasio, 1989).

Persistent States Enter Consciousness. In our model, module outputs enter
consciousness if they persist for a sufficiently long time. What counts as long enough

lWe do not propose that this process is feedforward at the neural level. Rather, we
mean that any iterative refinement of the output over time is unimportant and irrelevant.

On the Computational Utility of Consciousness 13

relaxation search

feedforward mapping
.00 ••

Figure 1: Modules consist of two components.

is not yet determined, but in order to model specific psychological data, we will be
required to make this issue precise. At that time a specific commitment will need
to be made, and this commitment must be maintained when modeling further data.

An important property of our model is that there is no hierarchy of modules with
respect to awareness, in contrast to several existing theories that propose that access
to some particular module (or neural processing area) is required for consciousness
(e.g., Baars, 1988). Rather, information in any module reaches awareness simply by
persisting long enough. The persistence hypothesis is consistent with the theoretical
perspectives of Smolensky (1988), Rumelhart et al (1986), Damasio (1989), Crick
and Koch (1990), and others.

2.1 WHEN ARE MENTAL STATES CONSCIOUS?

In our framework, the output of any module will enter consciousness if it persists in
time. The persistence of an output state of a module is assured if: (1) it is a point
attractor of the relaxation search (i.e., a well-formed state), and (2) the inputs to
the module are relatively constant , i.e., they continue to be mapped into the same
attractor basin.

While our framework appears to make strong claims about the necessary and suf­
ficient conditions for consciousness, without an exact specification of the modules
forming the cognitive architecture, it is lacking as a rigorous, testable theory. A
complete theory will require not only a specification of the modules, but will also
have to avoid arbitrariness in claiming that certain cognitive operations or brain
regions are modules while other are not. Ultimately, one must identify the neu­
rophysiological and neuroanatomical properties of the brain that determine the
module boundaries (see Crick, 1994, for a promising step in this regard).

3 COMPUTATIONAL UTILITY OF CONSCIOUSNESS

For the moment, suppose that our framework provides a sensible account of aware­
ness phenomena (demonstrating this is the goal of ongoing work.) If one accepts
this, and hence the notion that a cleanup process and the resulting persistent states
are required for awareness, questions about the role of cleanup in the model be­
come quite interesting because they are equivalent to questions about the role of
the mechanism underlying awareness in cognition. One question one might ask is
whether there is computational utility to achieving conscious states. That is, does a
system that achieves persistent states perform better than a system that does not?

14 Donald Mathis, Michael C. Mozer

Does a system that encourages settling to well-formed states perform better than a
system that does not? We now show that the answer to this question is yes.

3.1 ADDITION SIMULATION

To examine the utility of cleanup, we trained a module to perform a simple multistep
cognitive task: adding a pair of two-digit numbers in three steps.2 We tested the
system with and without cleanup and compared the generalization performance.

The network architecture (Figure 2) consists of a single module. The inputs consist
of the problem statement and the current partial solution-state. The output is
an updated solution-state. The module's output feeds back into its input. The
problem statement is represented by four pools of units, one for each digit of each
operand, where each pool uses a local encoding of digits. Partial solution states are
represented by five pools, one for each of the three result digits and one for each of
the two carry digits.

Projection

Input-ot,rtpu
mapping

t

(

~ ~ jU
(copy) ~ if)

1 result 11 Iresult21 I result 31 leany tI leany21

+ I hidden units I

.,/ "-~[~E::~:::][:iIl[iI] Iresult111resutt 211result311eany 111eany 21

" Figure 2: Network architecture for the addition task

..........

(copy)

Each addition problem was decomposed into three steps (Figure 3), each describing
a transformation from one partial solution state to the next, and the mapping net
was trained perform each transformation individually.

? ?
48

+ 62
???

step 1 --..
? 1

48
+ 62

??O

step 2 --..
1 1

48
+ 62

?10

step 3 --..
1 1

48
+ 62

11 0

Figure 3: The sequence of steps in an example addition problem

Step 1 Given the problem statement, activate the rightmost result digit and right­
most carry digit (comprising the first partial solution) .

2 Of course, we don't believe that there is a brain module dedicated to addition problems.
This choice was made because addition is an intuitive example of a multistep task.

On the Computational Utility of Consciousness 15

Step 2 Given the first partial solution, activate the next result and carry digits
(second partial solution).

Step 3 Given the second partial solution, activate the leftmost result digit (final
solution).

The set of well-formed states in this domain consists of all possible combinations of
digits and "don't knows" among the pools ("don't knows" are denoted by question
marks in Figure 3) . Local representations of digits are used within each pool, and
"don't knows" are represented by the state in which no unit is active. Thus, the
set of well-formed states are those in which either one or no units are active in
each pool. To make these states attractors of the cleanup net, the connections
were hand-wired such that each pool was a winner-take-all pool with an additional
attractor at the zero state.

To run the net, a problem statement pattern is clamped on the input units, and
the net is allowed to update for 200 iterations. Unit activities were updated using
an incremental rule approximating continuous dynamics:

ai(t) = TI(L: Wijaj(t - 1)) + (1 - T)ai(t - 1)
j

where ai(t) is the activity of unit i at time t, T is a time constant in the interval
[0,1]' and 10 is the usual sigmoid squashing function.

Figure 4 shows the average generalization performance of networks run with and
without cleanup, as a function of training set size. Note that, in principle, it is
not necessary for the system to have a cleanup process to learn the training set
perfectly, or to generalize perfectly. Thus, it is not simply the case that no solutions
exist without cleanup. The generalization results were that for any size training set,
percent correct on the generalization set is always better with cleanup than without.
This indicates that although the mapping network often generalizes incorrectly, the
output pattern often falls within the correct attractor basin. This is especially
beneficial in multistep tasks because cleanup can correct the inaccuracies introduced
by the mapping network, preventing the system from gradually diverging from the
desired trajectory.

- Projection
= No projection

training set size
(% of all problems)

Figure 4: Cleanup improves generalization performance.

Figure 5 shows an example run of a trained network. There is one curve for each
of the five result and carry pools, showing the degree of "activity" of the ultimate
target pattern, t, for that pool as a function of time. Activity is defined to be

e-lit-aIl2 where a is the current activity pattern and t is the target. The network

/6 Donald Mathis, Michael C. Mozer

solves the problem by passing though the correct sequence of intermediate states,
each of which are temporarily persistent. This resembles the sequence of conscious
states a person might experience while performing this task; each step of the problem
is performed by an unconscious process, and the results of each of step appear in
conscious awareness.

�1�.�0�r�-�-�-�-�=�=�=�=�=�~�-�-�-�- �- �-�_ �"�"�:�:�-�- �_�~�"�"�-�:�-�"�"�"�"�"�' �-�-�- �- �-�-�-�-�-�-�,�

Activation of
target pattern .8
in each pool

.6

,:' :'"
: .'

.' "
" " ... :'

,: ,'.

result digit I,
-- carry digit I

result digit 2,
----- carrydigit2

.......... result digit 3

- - - - - - - - - - ---".:!/
�~�~�~�~�I�O�~�~�~�~�2�~�O�~�-�-�~�3�~�O�-�-�-�~�4�~�O�-�-�-�~�5�0�~�-�-�~� TIme

Figure 5: Network solving the addition task in three steps

3.2 CHOICE POINT SIMULATION

In many ordinary situations, people are required to make decisions, e.g., drive
straight through an intersection or turn left, order macaroni or a sandwich for
lunch. At these choice points, any of the alternative actions are reasonable a priori.
Contextual information determines which action is correct, e.g., whether you are
trying to drive to work or to the supermarket. Conscious decision making often
occurs at these choice points, except when the task is overlearned (Mandler, 1975).

We modeled a simple form of a choice point situation. We trained a module to
output sequences of states, e.g., ABCD or EFGH, where states were represented by
unique activity patterns over a set of units. If the sequences shared no elements,
then presenting the first element of any sequence would be sufficient to regenerate
the sequence. But when sequences overlap, choice points are created. For example,
with the sequences ABCD and AEFG, state A can be followed by either B or E.

We show that cleanup allows the module to make a decision and complete one of
the two sequences. Figure 6 shows the operation of the module with and without
cleanup following presentation of an A after training on the sequence pair ABCD and
AEFG. There is one curve for each state, showing the activation of that state (defined
as before), as a function of time. When the network is run with cleanup, although
both states Band E are initially partially activated, the cleanup process maps this
ill-formed state to state B, and the network then correctly completes the sequence
ABCD. Without cleanup, the initial activation of states Band E causes a blending of
the two sequences ABCD and AEFG and the state degenerates.3

Although the arithmetic and choice point tasks seem simple in part because we
predefined the set of well-formed states. However, because the architecture segre-

3In this simulation, we are not modeling the role of context in helping to select one
sequence or another; we are simply assuming that either sequence is valid in the current
context. The nature of the model does not change when we consider context. Assuming
that the domain is not highly overlearned, the context will not strongly evoke one alter­
native action or the other in the feedforward mapping, leading to partial activation of
multiple states, and the cleanup process will be needed to force a decision.

