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Abstract 

In this paper, we derive classifiers which are winner-take-all (WTA) 
approximations to a Bayes classifier with Gaussian mixtures for 
class conditional densities. The derived classifiers include clustering 
based algorithms like LVQ and k-Means. We propose a constrained 
rank Gaussian mixtures model and derive a WTA algorithm for it. 
Our experiments with two speech classification tasks indicate that 
the constrained rank model and the WTA approximations improve 
the performance over the unconstrained models. 

1 Introduction 

A classifier assigns vectors from Rn (n dimensional feature space) to one of K 
classes, partitioning the feature space into a set of K disjoint regions. A Bayesian 
classifier builds the partition based on a model of the class conditional probability 
densities of the inputs (the partition is optimal for the given model). 

In this paper, we assume that the class conditional densities are modeled by mixtures 
of Gaussians. Based on Nowlan's work relating Gaussian mixtures and clustering 
(Nowlan 1991), we derive winner-take-all (WTA) algorithms which approximate a 
Gaussian mixtures Bayes classifier. We also show the relationship of these algo­
rithms to non-Bayesian cluster-based techniques like LVQ and k-Means. 

The main problem with using Gaussian mixtures (or WTA algorithms thereof) is the 
explosion in the number of parameters with the input dimensionality. We propose 
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a constrained rank Gaussian mixtures model for classification. Constraining the 
rank of the Gaussians reduces the effective number of model parameters thereby 
regularizing the model. We present the model and derive a WTA algorithm for it. 
Finally, we compare the performance of the different mixture models discussed in 
this paper for two speech classification tasks. 

2 Gaussian Mixture Bayes (GMB) classifiers 

Let x denote the feature vector (x E 'Rn ), and {n I , I = 1, ... , K} denote the 
classes. Class priors are denoted p(nI) and the class-conditional densities are de­
noted p(x I nI). The discriminant function for the Bayes classifier is 

(1) 

An input feature vector x is assigned to class I if 6I(x) > 6J (x) 'VJ:F I . Given the 
class conditional densities, this choice minimizes the classification error rate (Duda 
and Hart 1973). 

We model each class conditional density by a mixture composed of QI component 
Gaussians. The Bayes discriminant function (see Figure 1) becomes 

QI I 

j'(x)=PW)L "j,foiTlexp[-~(X-~J{~J-\x-~J)], (2) 
;=1 (21r)n/2 I~fl 

where ~J and ~f are the mean and the covariance matrix of the lh mixture com­
ponent for nl. 
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Fig. 1: Figure showing the decision rule of a GMB classifier for a two class problem 
with one input feature. The horizontal axis represents the feature and the vertical axis 
represents the Bayes discriminant functions. In this example, the class conditional densities 
are modelled as a mixture of two Gaussians and equal priors are assumed. 

To implement the Gaussian mixture Bayes classifier (GMB) we first separate the 
training data into the different classes. We then use the EM algorithm (Dempster 
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et al 1977, Nowlan 1991) to determine the parameters for the Gaussian mixture 
density for each class. 

3 Winner-take-all approximations to G MB classifiers 

In this section, we derive winner-take-all (WTA) approximations to GMB classifiers. 
We also show the relationship of these algorithms to non-Bayesian cluster-based 
techniques like LVQ and k-Means. 

3.1 The WTA model for GMB 

The WTA assumptions (relating hard clustering to Gaussian mixtures; see (Nowlan 
1991)) are: 

• p(x 101) are mixtures of Gaussians as in (2). 

• The summation in (2) is dominated by the largest term. This is "equivalent 
to assigning all of the responsibility for an observation to the Gaussian with 
the highest probability of generating that observation" (Nowlan 1991). 

To draw the relation between GMB and cluster-based classifiers, we further assume 
that: 

• The mixing proportions (oj) are equal for a given class. 

• The number of mixture components QI is proportional to p(O/). 

Applying all the above assumptions to (2), taking logs and discarding the terms 
that are identical for each class, we get the discriminant function 

AI Q.1 [1 (I 1 ( I T I-I I ] -y (x) = - ~f "2 log IEj!) + "2 x - ILj) ~j (x - ILj) . (3) 

The discriminant function (3) suggests an algorithm that approximates the Bayes 
classifier. We segregate the feature vectors by class and then train a separate vector 
quantizer (VQ) for each class. We then compute the means ILl and the covariance 
matrices E1Jor each Voronoi cell of each quantizer, and use (3) for classifying new 
patterns. We call this algorithm VQ-Covariance. Note that this algorithm does 
not do a maximum likelihood estimation of its parameters based on the probability 
model used to derive (3). The probability model is only used to classify patterns. 

3.2 The relation to LVQ and k-Means 

Further assume that for each class, the mixture components are spherically sym­
metric with covariance matrix El = 0"2 I, with 0"2 identical for all classes. We obtain 
the discriminant function, 

A QI 2 

-y/(x) = - r¢n II x - J.t)~ II . 
)=1 

(4) 
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This is exactly the discriminant function used by the learning vector quantizer 
(LVQ; Kohonen 1989) algorithm. Though LVQ employs a discriminatory training 
procedure (i.e it directly learns the class boundaries and does not explicitly build a 
separate model for each class), the implicit model of the class conditional densities 
used by LVQ corresponds to a GMB model under all the assumptions listed above. 
This is also the implicit model underlying any classifier which makes its classification 
decision based on the Euclidean distance measure between a feature vector and a 
set of prototype vectors (e.g. a k-Means clustering followed by classification based 
on (4)) . 

4 Constrained rank GMB classifiers 

In the preceding sections, we have presented a GMB classifier and some WTA 
approximations to GMB. Mixture models such as GMB generally have too many 
parameters for small data sets. In this section, we propose a way of regularizing the 
mixture densities and derive a WTA classifier for the regularized model. 

4.1 The constrained rank model 

In section 2, we assumed that the class conditional densities of the feature vectors 
x are mixtures of Gaussians 

(5) 

where p.J and EJ are the means and covariance matrices for the jth component 
Gaussian. eJi and AJi are the orthonormal eigenvectors and eigenvalues of I::Ji 
(ordered such that A}l ~ '" ~ AJn). In (5), we have written the Mahalanobis 
distance in terms of the eigenvectors. 

For a particular data point x, the Mahalanobis distance is very sensitive to changes 
in the squared projections onto the trailing eigen-directions, since the variances 
are very small in these directions. This is a potential problem with small data sets. 
When there are insufficient data points to estimate all the parameters of the mixture 
density accurately, the trailing eigen-directions and their associated eigenvalues are 
likely to be poorly estimated. Using the Mahalanobis distance in (5) can lead to 
erroneous results in such cases. 

We propose a method for regularizing Gaussian mixture classifiers based on the 
above ideas. We assume that the trailing n - m eigen-directions of each Gaussian 
component are inaccurate due to overfitting to the training set. We rewrite the class 
conditional densities (5) retaining only the leading m (0 < m ::; n) eigen-directions 
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in the determinants and the Mahalanobis distances 

p(x I Ill) = f m 2) m I exp [-~(x - ILJ{ (f e;~fiT) (x - ILJ)] 
j=1 (21T) / ft=1 \i i=l Jl 

(6) 
We choose the value of m (the reduced rank) by cross-validation over a separate 
validation set. Thus, our model can be considered to be regularizing or constraining 
the class conditional mixture densities. 

If we apply the above model and derive the Bayes discriminant functions (1), we 
get, 

8I (x) = p(nI) ~ m 2 a} m I exp [-~(X - ILJ)T (f e}~f/) (x - ILJ)]. 
j=1 (21T) / y'ft=l \i i=1 Jl 

(7) 
We can implement a constrained rank Gaussian mixture Bayes (GMB-Reduced) 
classifier based on (7) using the EM algorithm to determine the parameters of the 
mixture density for each class. We segregate the data into different classes and use 
the EM algorithm to determine the parameters of the full mixture density (5). We 
then use (7) to classify patterns. 

4.2 A constrained rank WTA algorithm 

We now derive a winner-take-all (WTA) approximation for the constrained rank 
mixture model described above. We assume (similar to section 3.1) that 

• p(x I nI) are constrained mixtures of Gaussians as in (6). 

• The summation in (6) is dominated by the largest term (the WTA assump-
tion). . 

• The mixing proportions (a}) are equal for a given class and the number of 
components QI is proportional to p(nI). 

Applying these assumptions to (7), taking logs and discarding the terms that are 
identical for each class, we get the discriminant function 

(8) 

It is interesting to compare (8) with (3) . Our model postulates that the trailing 
n - m eigen-directions of each Gaussian represent overfitting to noise in the training 
set. The discriminant functions reflect this; (8) retains only those terms of (3) which 
are in the leading m eigen-directions of each Gaussian. 

We can generate an algorithm based on (8) that approximates the reduced rank 
Bayes classifier. We separate the data based on classes and train a separate vector 
quantizer (VQ) for each class. We then compute the means IL}, the covariance 
matrices ~} for each Voronoi cell of each quantizer and the orthonormal eigenvectors 
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Table 1: The test set classification accuracies for the TIMIT vowels data for different 
algorithms. 

ALGORITHM 
MLP (40 nodes in hidden layer) 
GMB (1 component; full) 
GMB (1 component; diagonal) 
GMB-Reduced (1 component; 13-D) 
VQ-Covariance (1 component) 
VQ-Covariance-Reduced (1 component; 13-D) 
LVQ (48 cells) 

ACCURACY 
46.8% 
41.4% 
46.3% 
51.2% 
41.4% 
51.2% 
41.4% 

eJi and eigenvalues AJ for each covariance matrix EJ. We use (8) for classifying new 
patterns. Notice that the algorithm described above is a reduced rank version of 
VQ-Covariance (described in section 3.1). We call this algorithm VQ-Covariance­
Reduced. 

5 Experimental Results 

In this section we compare the different mixture models and a multi layer percep­
tron (MLP) for two speech phoneme classification tasks. The measure used is the 
classification accuracy. 

5.1 TIMIT data 

The first task is the classification of 12 monothongal vowels from the TIMIT 
database (Fisher and Doddington 1986). Each feature vector consists of the lowest 
32 DFT coefficients, time-averaged over the central third of the vowel. We par­
titioned the data into a training set (1200 vectors), a validation set (408 vectors) 
for model selection, and a test set (408 vectors). The training set contained 100 
examples of each class. The values of the free parameters for the algorithms (the 
number of component densities, number of hidden nodes for the MLP etc.) were 
selected by maximizing the performance on the validation set. 

Table 1 shows the results obtained with different algorithms. The constrained rank 
models (GMB-Reduced and VQ-Covariance-Reduced1) perform much better than 
all the unconstrained ones and even beat a MLP for this task. This data set consists 
of very few data points per class, and hence is particularly susceptible to over fitting 
by algorithms with a large number of parameters (like GMB). It is not surprising 
that constraining the number of model parameters is a big win for this task. 

INote that since the best validation set performance is obtained with only one compo­
nent for each mixture density, the WTA algorithms are identical to the GMB algorithms 
(for these results). 
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Table 2: The test set classification accuracies for the CENSUS data for different algo­
rithms. 

ALGORITHM 
MLP (80 nodes in hidden layer) 
GMB (1 component; full) 
GMB (8 components; diagonal) 
GMB-Reduced (2 components; 35-D) 
VQ-Covariance (3 components) 
VQ-Covariance-Reduced (4 components; 38-D) 
LVQ (55 cells) 

5.2 CENSUS data 

ACCURACY 
88.2% 
77.2% 
70.9% 
82.5% 
77.5% 
84.2% 
67.3% 

The next task we experimented with was the classification of 9 vowels (found in the 
utterances ofthe days of the week). The data was drawn from the CENSUS speech 
corpus (Cole et alI994). Each feature vector was 70 dimensional (perceptual linear 
prediction (PLP) coefficients (Hermansky 1990) over the vowel and surrounding 
context}. We partitioned the data into a training set (8997 vectors), a validation 
set (1362 vectors) for model selection, and a test set (1638 vectors). The training 
set had close to a 1000 vectors per class. The values of the free parameters for the 
different algorithms were selected by maximizing the validation set performance. 

Table 2 gives a summary of the classification accuracies obtained using the different 
algorithms. This data set has a lot more data points per class than the TIMIT data 
set. The best accuracy is obtained by a MLP, though the constrained rank mixture 
models still greatly outperform the unconstrained ones. 

6 Discussion 

We have derived WTA approximations to GMB classifiers and shown their relation 
to LVQ and k-Means algorithms. The main problem with Gaussian mixture models 
is the explosion in the number of model parameters with input dimensionality, re­
sulting in poor generalization performance. We propose constrained rank Gaussian 
mixture models for classification. This approach ignores some directions ( "noise") 
locally in the input space, and thus reduces the effective number of model param­
eters. This can be considered as a way of regularizing the mixture models. Our 
results with speech vowel classification indicate that this approach works better 
than using full mixture models, especially when the data set size is small. 

The WTA algorithms proposed in this paper do not perform a maximum likelihood 
estimation of their parameters. The probability model is only used to classify data. 
We can potentially improve the performance of these algorithms by doing maximum 
likelihood training with respect to the models presented here. 
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