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Abstract 

One of the fundamental properties that both neural networks and 
the central nervous system share is the ability to learn and gener­
alize from examples. While this property has been studied exten­
sively in the neural network literature it has not been thoroughly 
explored in human perceptual and motor learning. We have chosen 
a coordinate transformation system-the visuomotor map which 
transforms visual coordinates into motor coordinates-to study the 
generalization effects of learning new input-output pairs. Using a 
paradigm of computer controlled altered visual feedback, we have 
studied the generalization of the visuomotor map subsequent to 
both local and context-dependent remappings. A local remapping 
of one or two input-output pairs induced a significant global, yet 
decaying, change in the visuomotor map, suggesting a representa­
tion for the map composed of units with large functional receptive 
fields. Our study of context-dependent remappings indicated that 
a single point in visual space can be mapped to two different fin­
ger locations depending on a context variable-the starting point 
of the movement. Furthermore, as the context is varied there is 
a gradual shift between the two remappings, consistent with two 
visuomotor modules being learned and gated smoothly with the 
context. 

1 Introduction 

The human central nervous system (CNS) receives sensory inputs from a multi­
tude of modalities, each tuned to extract different forms of information from the 
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environment. These sensory signals are initially represented in disparate coordi­
nate systems, for example visual information is represented retinotopically whereas 
auditory information is represented tonotopically. The ability to transform infor­
mation between coordinate systems is necessary for both perception and action. 
When we reach to a visually perceived object in space, for example, the location 
of the object in visual coordinates must be converted into a representation appro­
priate for movement, such as the configuration of the arm required to reach the 
object. The computational structure of this coordinate transformation, known as 
the visuomotor map, is the focus of this paper. 

By examining the change in visuomotor coordination under prismatically induced 
displacement and rotation, Helmholtz (1867/1925) and Stratton (1897a,1897b) pi­
oneered the systematic study of the representation and plasticity of the visuomotor 
map. Their studies demonstrate both the fine balance between the visual and mo­
tor coordinate systems, which is disrupted by such perturbations, and the ability 
of the visuomotor map to adapt to the displacements induced by the prisms. Sub­
sequently, many studies have further demonstrated the remarkable plasticity of the 
map in response to a wide variety of alterations in the relationship between the vi­
sual and motor system (for reviews see Howard, 1982 and Welch, 1986)-the single 
prerequisite for adaptation seems to be that the remapping be stable (Welch, 1986). 
Much less is known, however, about the topological properties of this map. 

A coordinate transformation such as the visuomotor map can be regarded as a func­
tion relating one set of variables (inputs) to another (outputs). For the visuomotor 
map the inputs are visual coordinates of a desired target and the outputs are the 
corresponding motor coordinates representing the arm's configuration (e.g. joint 
angles). The problem of learning a sensorimotor remapping can then be regarded 
as a function approximation problem. Using the theory of function approximation 
one can make explicit the correspondence between the representation used and the 
patterns of generalization that will emerge. Function approximators can predict 
patterns of generalization ranging from local (look-up tables), through intermedi­
ate (CMACs, Albus, 1975; and radial basis functions, Moody and Darken, 1989 ) 
to global (parametric models). 

In this paper we examine the representational structure of the visuomotor map 
through the study of its spatial and contextual generalization properties. In the 
spatial generalization study we address the question of how pointing changes over 
the reaching workspace after exposure to a highly localized remapping. Previous 
work on spatial generalization, in a study restricted to one dimension, has led to the 
conclusion that the visuomotor map is constrained to generalize linearly (Bedford, 
1989). We test this conclusion by mapping out the pattern of generalization induced 
by one and two remapped points in two dimensions. 

In the contextual generalization study we examine the question of whether a single 
point in visual space can be mapped into two different finger locations depending on 
the context of a movement-the start point. If this context-dependent remapping 
occurs, the question arises as to how the mapping will generalize as the context is 
varied. Studies of contextual remapping have previously shown that variables such 
as eye position (Kohler, 1950; Hay and Pick, 1966; Shelhamer et al., 1991), the feel of 
prisms (Kravitz, 1972; Welch, 1971) or an auditory tone (Kravitz and Yaffe, 1972), 
can induce context-dependent aftereffects. The question of how these context-
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dependent maps generalize-which has not been previously explored-reflects on 
the possible representation of multiple visuomotor maps and their mixing with a 
context variable. 

2 Spatial Generalization 

To examine the spatial generalization of the visuomotor map we measured the 
change in pointing behavior subsequent to one- and two-point remappings. In order 
to measure pointing behavior and to confine subjects to learn limited input-output 
pairs we used a virtual visual feedback setup consisting of a digitizing tablet to 
record the finger position on-line and a projection/mirror system to generate a 
cursor spot image representing the finger position (Figure 1a). By controlling the 
presence of the cursor spot and its relationship to the finger position, we could both 
restrict visual feedback of finger position to localized regions of space and introduce 
perturbations of this feedback. 
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Figure 1. a) Experimental setup. The subjects view the reflected image of the 
rear projection screen by looking down at the mirror. By matching the screen­
mirror distance to the mirror-tablet distance all projected images appeared to be in 
the plane of the finger (when viewed in the mirror) independent of head position. 
b) The position of the grid of targets relative to the subject. Also shown, for the 
x-shift condition, is the perceived and actual finger position when pointing to the 
central training target. The visually perceived finger position is indicated by a cursor 
spot which is displaced from the actual finger position. c) A schematic showing the 
perturbation for the x-shift group. To see the cursor spot on the central target the 
subjects had to place their finger at the position indicated by the tip of the arrow. 
d) & e) Schematics similar to c) showing the perturbation for the y-shift and two 
point groups, respectively. 

In the tradition of adaptation studies (e.g. Welch, 1986), each experimental session 
consisted of three phases: pre-exposure, exposure, and post-exposure. During the 
pre- and post-exposure phases, designed to assess the visuomotor map, the subject 
pointed repeatedly, without visual feedback of his finger position, to a grid of tar­
gets over the workspace. As no visual input of finger location was given, no learning 
of the visuomotor map could occur . During the exposure phase subjects pointed 
repeatedly to one or two visual target locations, at which we introduced a discrep-
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ancy between the actual and visually displayed finger location. No visual feedback 
of finger position was given except when within 0.5 cm of the target, thereby confin­
ing any learning to the chosen input-output pairs. Three local perturbations of the 
visuomotor map were examined: a 10 cm rightward displacement (x-shift group, 
Figure lc), 10 cm displacement towards the body (y-shift group, Figure Id), and a 
displacement at two points, one 10 cm away from, and one 10 cm towards the body 
(two point group , Figure Ie). For example, for the x-shift displacement the subject 
had to place his finger 10 cm to the right of the target to visually perceive his finger 
as being on target (Figure Ib). Separate control subjects, in which the relationship 
between the actual and visually displayed finger position was left unaltered, were 
run for both the one- and two-point displacements, resulting in a total of 5 groups 
with 8 subjects each. 

50 -€) 

45 

40 

] JS 

>-
30 

25 

X «(,:m) 

45 CJ Cl 

41) 

25 t9 

20 

-10 -5 10 15 20 

X (I.:m ) 

55 

50 

45 

c 40 
'0 e 
0. ~ 35 

~ >- 30 
E-

25 

20 G 

15 

50 __ .......................... " 

4' __ .......................... ..... 

40 __ ............ _ ........ _ 

.. ..';1.' __ ............ __ 

,. 
30 ........ --..... ~~ .............. 

20 

10 1 ~ 20 

X (Lm) 

45 \ 

40 \ I 

~ 35 

>- 30 \ 

25 

20 

-10 ".'i 10 15 20 

55 

5(J 

45 

30 

25 

2(J 

15 

x (em) 

, , , 
" , \ 

I I' t 
~ I t 

~ tit 
I I I 

I I 

t t 

t t 
J f 

X (em) 

-10 () 10 2() 

X (em) 

-15 · 10 -5 0 5 10 15 20 2.' -15 -10·5 I) 5 11) 15 211 25 -10 () !() 2() 

x (em) X (em) X (em) 

Figure 2. Results of the spatial generalization study. The first column shows the 
mean change in pointing, along with 95% confidence ellipses, for the x-shift, y-shift 
and two point groups. The second column displays a vector field of changes obtained 
from the data by Gaussian kernel smoothing. The third column plots the proportion 
adaptation in the direction of the perturbation. Note that whereas for the x- and y­
shift groups the lighter shading corresponds to greater adaptation, for the two point 
group lighter shades correspond to adaptation in the positive y direction and darker 
shades in the negative y direction. 
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The patterns of spatial generalization subsequent to exposure to the three local 
remappings are shown in Figure 2. All three perturbation groups displayed both 
significant adaptation at the trained points, and significant, through decremented, 
generalization of this learning to other targets. As expected, the control groups 
(not shown) did not show any significant changes. The extent of spatial general­
ization, best depicted by the shaded contour plots in Figure 2, shows a pattern of 
generalization that decreases with distance away from the trained points. Rather 
than inducing a single global change in the map, such as a rotation or shear, the 
two point exposure appears to induce two opposite fields of decaying generalization 
at the intersection of which there is no change in the visuomotor map. 

3 Contextual Generalization 

The goal of this experiment was first to explore the possibility that multiple visuo­
motor maps, or modules, could be learned, and if so, to determine how the overall 
system behaves as the context used in training each module is varied. To achieve 
this goal, we exposed subjects to context-dependent remappings in which a sin­
gle visual target location was mapped to two different finger positions depending 
on the start point of the movement. Pointing to the target from seven different 
starting points (Figure 3) was assessed before and after an exposure phase. During 
this exposure phase subjects made repeated movements to the target from starting 
points 2 and 6 with a different perturbation of the visual feedback depending on 
the starting point . The form of these context-dependent remappings is shown in 
Figure 3. For example, for the open x-shift group (Figure 3c), the visual feedback 
of the finger was displaced to the right for movements from point 2 and to the left 
from point 6. Therefore the same visual target was mapped to two different finger 
positions depending on the context of the movement. To test learning of the remap­
ping and generalization to other start points we examined the change in pointing, 
without visual feedback, to the target from the 7 start points. 
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Figure 3. Schematic of the exposure phase in the contextual generalization exper­
iment. Shown are the actual finger path (solid line), the visually displayed finger 
path (dotted line), the seven start points and the target used in the pre- and post­
exposure phases. The perturbation introduced depended on whether the movement 
started form start point 2 or 6. Note that for the three perturbation groups, although 
the subjects saw a triangle being traced out, the finger took a different path. 
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The results are shown in Figure 4. Whereas the controls did not show any significant 
pattern of change, the three other groups showed adaptive, start point dependent, 
changes in the direction opposite to the perturbation. Thus, for example, the x­
open group displayed a pattern of change in the leftward (negative x) direction for 
movements from the left start points and rightwards for movements from the right 
start points. Furthermore, as the start point was varied, the change in pointing 
varied gradually. 
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Figure 4. a) Adaptation in the x direction plotted as a function of starting point for 
the control, crossed x-shift and open x-shift groups (mean and 1 s.e.). b) Adaptation 
in the y direction for the control and y-shift groups. 

4 Discussion 

Clearly, from the perspective of function approximation theory, the problem of 
relearning the visuomotor mapping from exposure to one or two input-output pairs 
is ill-posed. The mapping learned, as measured by the pattern of generalization to 
novel inputs, therefore reflects intrinsic constraints on the internal representation 
used. 

The results from the spatial generalization study suggest that the visuomotor coor­
dinate transformation is internally represented with units with large but localized 
receptive fields. For example, a neural network model with Gaussian radial basis 
function units (Moody and Darken, 1989), which can be derived by assuming that 
the internal constraint in the visuomotor system is a smoothness constraint (Poggio 
and Girosi, 1989), predicts a pattern of generalization very similar the one experi­
mentally observed (e.g. see Figure 5 for a simulation of the two point generalization 
experiment).1 In contrast, previously proposed models for the representation of the 
visuomotor map based on global parametric representations in terms of felt direc­
tion of gaze and head position (e.g. Harris, 1965) or linear constraints (Bedford, 
1989) do not predict the decaying patterns of Cartesian generalization found. 

1 See also Pouget & Sejnowski (this volume) who, based on a related analysis of neuro­
physiological data from parietal cortex, suggest that a basis function representation may 
be used in this visuomotor area. 



Computational Structure of Coordinate Transformations 1131 

50 , \ 

45 \ \ \ 
\ t 

t } ~ 40 

\ \ \ t e ~ 35 

\ ~ ! 
~ 

>- I t t >-
30 

\ 
I I I 25 

~ ~ 
20 I' I' 

· 10 · 5 0 10 15 20 

X (em) X (em) 

Figure 5. Simulation of the two point spatial generalization experiment using a radial 
basis function network with 64 units with 5 cm Gaussian receptive fields. The inputs 
to the network were the visual coordinates of the target and the outputs were the joint 
angles for a two-link planar arm to reach the target. The network was first trained 
to point accurately to the targets , and then, after exposure to the perturbation, its 
pattern of generalization was assessed. 

The results from the second study suggest that multiple visuomotor maps can be 
learned and modulated by a context. A suggestive computational model for how 
such separate modules can be learned and combined is the mixture-of-experts neu­
ral network architecture (Jacobs et al. , 1991). Interpreted in this framework, the 
gradual effect of varying the context seen in Figure 4 could reflect the output of 
a gating network which uses context to modulate between two visuomotor maps. 
However, our results do not rule out models in which a single visuomotor map is 
parametrized by starting location, such as one based on the coding of locations via 
movement vectors (Georgopoulos, 1990) . 

5 Conclusions 

The goal of these studies has been to infer the internal constraints in the visuomotor 
system through the study of its patterns of generalization to local remappings. We 
have found that local perturbations of the visuomotor map produce global changes, 
suggesting a distributed representation with large receptive fields. Furthermore, 
context-dependent perturbations induce changes in pointing consistent with a model 
of visuomotor learning in which separate maps are learned and gated by the context . 
The approach taken in this paper provides a strong link between neural network 
theory and the study of learning in biological systems. 
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