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Abstract 

Parti-game is a new algorithm for learning from delayed rewards 
in high dimensional real-valued state-spaces. In high dimensions 
it is essential that learning does not explore or plan over state 
space uniformly. Part i-game maintains a decision-tree partitioning 
of state-space and applies game-theory and computational geom
etry techniques to efficiently and reactively concentrate high reso
lution only on critical areas. Many simulated problems have been 
tested, ranging from 2-dimensional to 9-dimensional state-spaces, 
including mazes, path planning, non-linear dynamics, and uncurl
ing snake robots in restricted spaces. In all cases, a good solution 
is found in less than twenty trials and a few minutes. 

1 REINFORCEMENT LEARNING 

Reinforcement learning [Samuel, 1959, Sutton, 1984, Watkins, 1989, Barto et al., 
1991] is a promising method for control systems to program and improve themselves. 
This paper addresses its biggest stumbling block: the curse of dimensionality [Bell
man, 1957], in which costs increase exponentially with the number of state variables. 

Some earlier work [Simons et al., 1982, Moore, 1991, Chapman and Kaelbling, 1991, 
Dayan and Hinton, 1993] has considered recursively partitioning state-space while 
learning from delayed rewards. The new ideas in the parti-game algorithm in-

711 



712 Moore 

clude (i) a game-theoretic splitting criterion to robustly choose spatial resolution 
(ii) real-time incremental maintenance and planning with a database of all previ
ous experIences, and (iii) using local greedy controllers for high-level "funneling" 
actions. 

2 ASSUMPTIONS 

The parti-game algorithm applies to difficult learning control problems in which: 

1. State and action spaces are continuous and multidimensional. 
2. "Greedy" and hill-dim bing techniques would become stuck, never attaining 

the goal. 
3. Random exploration would be hopelessly time-consuming. 
4. The system dynamics and control laws can have discontinuities and are 

unknown: they must be learned. 

The experiments reported later all have properties 1-4. However, the initial algo
rithm, described and tested here, has the following restrictions: 

5. Dynamics are deterministic. 
6. The task is specified by a goal, not an arbitrary reward function. 
7. The goal state is known. 
8. A "good" solution is required, not necessarily the optimal path. This na

tion of goodness can be formalized as "the optimal path to within a given 
resolution of state space". 

9. A local greedy controller is available, which we can ask to move greedily 
towards any desired state. There is no guarantee that a request to the 
greedy controller will succeed. For example, in a maze a greedy path to the 
goal would quickly hit a wall. 

Future developments may include relatively straightforward additions to the algo
rithm that would remove the need for restrictions 6-9. Restriction 5 is harder to 
remove. 

3 ESSENTIALS OF THE PARTI-GAME ALGORITHM 

The state space is broken into partitions by a kd-tree [Friedman et al., 1977]. The 
controller can always sense its current (continuous valued) state, and can cheaply 
compute which partition it is in. The space of actions is also discretized so that 
in a partition with N neighboring partitions , there are N high-level actions. Each 
high level action corresponds to a local greedy controller, aiming for the center of 
the corresponding neighboring partition. 

Each partition keeps records of all the occasions on which the system state has 
passed through it. Along with each record is a memory of which high level action 
was used (i.e. which neighbor was aimed for) and what the outcome was. Figure 1 
provides an illustration. 

Given this database of (partition, high-level-action, outcome) triplets, and our 
knowledge of the partition containing the goal state, we can try to compute the 
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Partition I Partition 2 

Figure 1: Three trajectories starting 
................... in partition 1, using high-level action 

"Aim at partition 2". Partition 1 re-
members three outcomes. 
(Part 1, Aim 2 --+ Part 2) 
(Part 1, Aim 2 --+ Part 1) 

, (Part 1, Aim 2 --+ Part 3) 
I Partition 3 I 

I 

best route to the goal. The standard approach would be to model the system 
as a Markov Decision Task in which we empirically estimate the partition tran
sition probabilities. However, the probabilistic interpretation of coarse resolution 
partitions can lead to policies which get stuck. Instead, we use a game-theoretic 
approach, in which we imagine an adversary. This adversary sees our choice of 
high-level action, and is allowed to select any of the observed previous outcomes 
of the action in this partition. Partitions are scored by minimaxing: the adversary 
plays to delay or prevent us getting to the goal and we play to get to the goal as 
quickly as possible. 

Whenever the system's continuous state passes between partitions, the database of 
state transitions is updated and, if necessary, the minimax scores of all partitions 
are updated. If real-time constraints do not permit full recomputation, the updates 
take place incrementally in a manner similar to prioritized sweeping [Moore and 
Atkeson, 1993]. 

As well as being robust to coarseness, the game-theoretic approach also tells us 
where we should increase the resolution . Whenever we compute that we are in a 
losing partition we perform resolution increase. We first compute the complete set 
of connected partitions which are also losing partitions. We then find the subset of 
these partitions which border some non-losing region. We increase the resolution of 
all these border states by splitting them along their longest axes1 . 

4 INITIAL EXPERIMENTS 

Figure 2 shows a 2-d continuous maze. Figure 3 shows the performance of the robot 
during the very first trial. It begins with intense exploration to find a route out of 
the almost entirely enclosed start region. Having eventually reached a sufficiently 
high resolution, it discovers the gap and proceeds greedily towards the goal, only 
to be stopped by the goal's barrier region. The next barrier is traversed at a much 
lower resolution, mainly because the gap is larger. 

Figure 4 shows the second trial, started from a slightly different position. The 
policy derived from the first trial gets us to the goal without further exploration. 
The trajectory has unnecessary bends. This is because the controller is discretized 
according to the current partitioning. If necessary, a local optimizer could be used 

1 More intelligent splitting criteria are under investigation. 
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Start I· 
Figure 2: A 2-d maze problem. The point 
robot must find a path from start to goal 
without crossing any of the barrier lines. Re
member that initially it does not know where 
any obstacles are, and must discover them by 
finding impassable states. 

to refine this trajectory2. 

Figure 3: The path taken during the entire 
first trial. See text for explanation. 

The system does not explore unnecessary areas. The barrier in the top left remains 
at low resolution because the system has had no need to visit there . Figures 5 and 6 
show what happens when we now start the system inside this barrier. 

Figure 7 shows a 3-d state space problem. If a standard grid were used, this would 
need an enormous number of states because the solution requires detailed three
point-turns. Parti-game's total exploration took 18 times as much movement as 
one run of the final path obtained. 

Figure 8 shows a 4-d problem in which a ball rolls around a tray with steep edges. 
The goal is on the other side of a ridge. The maximum permissible force is low, 
and so greedy strategies, or globally linear control rules, get stuck in a limit cycle. 
Parti-game's solution runs to the other end of the tray, to build up enough velocity 
to make it over the ridge. The exploration-length versus final-path-Iength ratio is 
24. 

Figure 9 shows a 9-joint snake-like robot manipulator which must move to a specified 
configuration on the other side of a barrier. Again, no initial model is given: the 
controller must learn it as it explores. It takes seven trials before fixing on the 
solution shown. The exploration-length versus final-path-length ratio is 60. 

2 Another method is to increase the resolution along the trajectory [Moore, 1991]. 
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Figure 4: The second trial. Figure 5: Starting inside the 

top left barrier. 
Figure 6: 
that. 

The trial after 

Figure 7: A problem with a planar rod being guided past obstacles . The state space 
is three-dimensional: two values specify the position of the rod's center, and the third 
specifies the rod's angle from the horizontal. The angle is constrained so that the pole's 
dotted end must always be below the other end. The pole's center may be moved a short 
distance (up to 1/40 of the diagram width) and its angle may be altered by up to 5 degrees, 
provided it does not hit a barrier in the process. Parti-game converged to the path shown 
below after two trials. The partitioning lines on the solution diagram only show a 2-d slice 
of the full kd-tree. 

Trials 10 
Steps no 
Partitions 149 149 149 Change 
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Figure 8: A puck sliding over a hilly surface (hills shown by contours below: the surface 
is bowl shaped, with the lowest points nearest the center, rising steeply at the edges). 
The state space is four-dimensional: two position and two velocity variables. The controls 
consist of a force which may be applied in any direction, but with bounded magnitude. 
Convergence time was two trials. 

Trials 1 2 
Steps 2609 115 
Partitions 13 13 

3 
no 
change 

lu..&.I.I.WI'U'I.· •••• 

10 

Figure 9: A nine-degree-of-freedom planar robot must move from the shown start con
figuration to the goal. The solution entails curling, rotating and then uncurling. It may 
not intersect with any of the barriers, the edge of the workspace, or itself. Convergence 
occurred after seven trials. 

Trials 1 2 
Steps 1090 430 
Partitions 41 66 

f-Fixed 
base 

3 4 
353 330 
67 69 

5 6 7 8 
739 200 52 
78 85 85 
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5 DISCUSSION 

Possible extensions include: 

• Splitting criteria that lay down splits between trajectories with spatially 
distinct outcomes. 

• Allowing humans to provide hints by permitting user-specified controllers 
("behaviors") as extra high-level actions. 

• Coalescing neighboring partitions that mutually agree. 

We finish by noting a promising sign involving a series of snake robot experiments 
with different numbers of links (but fixed total length). Intuitively, the problem 
should get easier with more links, but the curse of dimensionality would mean 
that (in the absence of prior knowledge) it becomes exponentially harder. This is 
borne out by the observation that random exploration with the three-link arm will 
stumble on the goal eventually, whereas the nine link robot cannot be expected to 
do so in tractable time. However, Figure 10 indicates that as the dimensionality 
rises, the amount of exploration (and hence computation) used by parti-game does 
not rise exponentially. Real-world tasks may often have the same property as the 
snake example: the complexity of the ultimate task remains roughly constant as the 
number of degrees of freedom increases. If so, we may have uncovered the Achilles' 
heel of the curse of dimensionality. 
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