
The Parti-game Algorithm for Variable
Resolution Reinforcement Learning in

Multidimensional State-spaces

Andrew W. Moore
School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

Parti-game is a new algorithm for learning from delayed rewards
in high dimensional real-valued state-spaces. In high dimensions
it is essential that learning does not explore or plan over state
space uniformly. Part i-game maintains a decision-tree partitioning
of state-space and applies game-theory and computational geom
etry techniques to efficiently and reactively concentrate high reso
lution only on critical areas. Many simulated problems have been
tested, ranging from 2-dimensional to 9-dimensional state-spaces,
including mazes, path planning, non-linear dynamics, and uncurl
ing snake robots in restricted spaces. In all cases, a good solution
is found in less than twenty trials and a few minutes.

1 REINFORCEMENT LEARNING

Reinforcement learning [Samuel, 1959, Sutton, 1984, Watkins, 1989, Barto et al.,
1991] is a promising method for control systems to program and improve themselves.
This paper addresses its biggest stumbling block: the curse of dimensionality [Bell
man, 1957], in which costs increase exponentially with the number of state variables.

Some earlier work [Simons et al., 1982, Moore, 1991, Chapman and Kaelbling, 1991,
Dayan and Hinton, 1993] has considered recursively partitioning state-space while
learning from delayed rewards. The new ideas in the parti-game algorithm in-

711

712 Moore

clude (i) a game-theoretic splitting criterion to robustly choose spatial resolution
(ii) real-time incremental maintenance and planning with a database of all previ
ous experIences, and (iii) using local greedy controllers for high-level "funneling"
actions.

2 ASSUMPTIONS

The parti-game algorithm applies to difficult learning control problems in which:

1. State and action spaces are continuous and multidimensional.
2. "Greedy" and hill-dim bing techniques would become stuck, never attaining

the goal.
3. Random exploration would be hopelessly time-consuming.
4. The system dynamics and control laws can have discontinuities and are

unknown: they must be learned.

The experiments reported later all have properties 1-4. However, the initial algo
rithm, described and tested here, has the following restrictions:

5. Dynamics are deterministic.
6. The task is specified by a goal, not an arbitrary reward function.
7. The goal state is known.
8. A "good" solution is required, not necessarily the optimal path. This na

tion of goodness can be formalized as "the optimal path to within a given
resolution of state space".

9. A local greedy controller is available, which we can ask to move greedily
towards any desired state. There is no guarantee that a request to the
greedy controller will succeed. For example, in a maze a greedy path to the
goal would quickly hit a wall.

Future developments may include relatively straightforward additions to the algo
rithm that would remove the need for restrictions 6-9. Restriction 5 is harder to
remove.

3 ESSENTIALS OF THE PARTI-GAME ALGORITHM

The state space is broken into partitions by a kd-tree [Friedman et al., 1977]. The
controller can always sense its current (continuous valued) state, and can cheaply
compute which partition it is in. The space of actions is also discretized so that
in a partition with N neighboring partitions , there are N high-level actions. Each
high level action corresponds to a local greedy controller, aiming for the center of
the corresponding neighboring partition.

Each partition keeps records of all the occasions on which the system state has
passed through it. Along with each record is a memory of which high level action
was used (i.e. which neighbor was aimed for) and what the outcome was. Figure 1
provides an illustration.

Given this database of (partition, high-level-action, outcome) triplets, and our
knowledge of the partition containing the goal state, we can try to compute the

The Parti-Game Algorithm for Variable Resolution Reinforcement Learning 713

Partition I Partition 2

Figure 1: Three trajectories starting
................... in partition 1, using high-level action

"Aim at partition 2". Partition 1 re-
members three outcomes.
(Part 1, Aim 2 --+ Part 2)
(Part 1, Aim 2 --+ Part 1)

, (Part 1, Aim 2 --+ Part 3)
I Partition 3 I

I

best route to the goal. The standard approach would be to model the system
as a Markov Decision Task in which we empirically estimate the partition tran
sition probabilities. However, the probabilistic interpretation of coarse resolution
partitions can lead to policies which get stuck. Instead, we use a game-theoretic
approach, in which we imagine an adversary. This adversary sees our choice of
high-level action, and is allowed to select any of the observed previous outcomes
of the action in this partition. Partitions are scored by minimaxing: the adversary
plays to delay or prevent us getting to the goal and we play to get to the goal as
quickly as possible.

Whenever the system's continuous state passes between partitions, the database of
state transitions is updated and, if necessary, the minimax scores of all partitions
are updated. If real-time constraints do not permit full recomputation, the updates
take place incrementally in a manner similar to prioritized sweeping [Moore and
Atkeson, 1993].

As well as being robust to coarseness, the game-theoretic approach also tells us
where we should increase the resolution . Whenever we compute that we are in a
losing partition we perform resolution increase. We first compute the complete set
of connected partitions which are also losing partitions. We then find the subset of
these partitions which border some non-losing region. We increase the resolution of
all these border states by splitting them along their longest axes1 .

4 INITIAL EXPERIMENTS

Figure 2 shows a 2-d continuous maze. Figure 3 shows the performance of the robot
during the very first trial. It begins with intense exploration to find a route out of
the almost entirely enclosed start region. Having eventually reached a sufficiently
high resolution, it discovers the gap and proceeds greedily towards the goal, only
to be stopped by the goal's barrier region. The next barrier is traversed at a much
lower resolution, mainly because the gap is larger.

Figure 4 shows the second trial, started from a slightly different position. The
policy derived from the first trial gets us to the goal without further exploration.
The trajectory has unnecessary bends. This is because the controller is discretized
according to the current partitioning. If necessary, a local optimizer could be used

1 More intelligent splitting criteria are under investigation.

714 Moore

Start I·
Figure 2: A 2-d maze problem. The point
robot must find a path from start to goal
without crossing any of the barrier lines. Re
member that initially it does not know where
any obstacles are, and must discover them by
finding impassable states.

to refine this trajectory2.

Figure 3: The path taken during the entire
first trial. See text for explanation.

The system does not explore unnecessary areas. The barrier in the top left remains
at low resolution because the system has had no need to visit there . Figures 5 and 6
show what happens when we now start the system inside this barrier.

Figure 7 shows a 3-d state space problem. If a standard grid were used, this would
need an enormous number of states because the solution requires detailed three
point-turns. Parti-game's total exploration took 18 times as much movement as
one run of the final path obtained.

Figure 8 shows a 4-d problem in which a ball rolls around a tray with steep edges.
The goal is on the other side of a ridge. The maximum permissible force is low,
and so greedy strategies, or globally linear control rules, get stuck in a limit cycle.
Parti-game's solution runs to the other end of the tray, to build up enough velocity
to make it over the ridge. The exploration-length versus final-path-Iength ratio is
24.

Figure 9 shows a 9-joint snake-like robot manipulator which must move to a specified
configuration on the other side of a barrier. Again, no initial model is given: the
controller must learn it as it explores. It takes seven trials before fixing on the
solution shown. The exploration-length versus final-path-length ratio is 60.

2 Another method is to increase the resolution along the trajectory [Moore, 1991].

The Parti-Game Algorithm for Variable Resolution Reinforcement Learning 715

(')
1/ ,. rn

c-f- V
v'\ 1 r ~ I ,r-Il 1

II j 11
~ /-

"-
f- I- L~ IT'" l.J J

1-+' 1

"- /

r--- ./
1-1 f-H

r--- ./
1-1 f-H

~
.f"" /'-- /--. -I-~ J))

-1 --1
Figure 4: The second trial. Figure 5: Starting inside the

top left barrier.
Figure 6:
that.

The trial after

Figure 7: A problem with a planar rod being guided past obstacles . The state space
is three-dimensional: two values specify the position of the rod's center, and the third
specifies the rod's angle from the horizontal. The angle is constrained so that the pole's
dotted end must always be below the other end. The pole's center may be moved a short
distance (up to 1/40 of the diagram width) and its angle may be altered by up to 5 degrees,
provided it does not hit a barrier in the process. Parti-game converged to the path shown
below after two trials. The partitioning lines on the solution diagram only show a 2-d slice
of the full kd-tree.

Trials 10
Steps no
Partitions 149 149 149 Change

716 Moore

Figure 8: A puck sliding over a hilly surface (hills shown by contours below: the surface
is bowl shaped, with the lowest points nearest the center, rising steeply at the edges).
The state space is four-dimensional: two position and two velocity variables. The controls
consist of a force which may be applied in any direction, but with bounded magnitude.
Convergence time was two trials.

Trials 1 2
Steps 2609 115
Partitions 13 13

3
no
change

lu..&.I.I.WI'U'I.· ••••

10

Figure 9: A nine-degree-of-freedom planar robot must move from the shown start con
figuration to the goal. The solution entails curling, rotating and then uncurling. It may
not intersect with any of the barriers, the edge of the workspace, or itself. Convergence
occurred after seven trials.

Trials 1 2
Steps 1090 430
Partitions 41 66

f-Fixed
base

3 4
353 330
67 69

5 6 7 8
739 200 52
78 85 85

The Parti-Game Algorithm for Variable Resolution Reinforcement Learning 717

5 DISCUSSION

Possible extensions include:

• Splitting criteria that lay down splits between trajectories with spatially
distinct outcomes.

• Allowing humans to provide hints by permitting user-specified controllers
("behaviors") as extra high-level actions.

• Coalescing neighboring partitions that mutually agree.

We finish by noting a promising sign involving a series of snake robot experiments
with different numbers of links (but fixed total length). Intuitively, the problem
should get easier with more links, but the curse of dimensionality would mean
that (in the absence of prior knowledge) it becomes exponentially harder. This is
borne out by the observation that random exploration with the three-link arm will
stumble on the goal eventually, whereas the nine link robot cannot be expected to
do so in tractable time. However, Figure 10 indicates that as the dimensionality
rises, the amount of exploration (and hence computation) used by parti-game does
not rise exponentially. Real-world tasks may often have the same property as the
snake example: the complexity of the ultimate task remains roughly constant as the
number of degrees of freedom increases. If so, we may have uncovered the Achilles'
heel of the curse of dimensionality.

~
ell

"'" 180 ~
~ = 160
Q
CJ 140
~

"'" 120
~
~ 100

.CI
~ 80
~
~ 60 e
fI.l 40
= Q 20

:= 0

"'" ~
~

References

I
3 4 5 6 7 8 9

Dimensionality

Figure 10: The number of par
titions finally created against de
grees of freedom for a set of snake
like robots. The kd-trees built were
all highly non-uniform, typically
having maximum depth nodes of
twice the dimensionality. The rela
tion between exploration time and
dimensionality (not shown) had a
similar shape.

[Barto et ai., 1991] A. G. Barto, S. J. Bradtke, and S. P. Singh. Real-time Learning and
Control using Asynchronous Dynamic Programming. Technical Report 91-57, University
of Massachusetts at Amherst, August 1991.

[Bellman, 1957] R. E . Bellman. Dynamic Programming. Princeton University Press,
Princeton, N J, 1957.

[Chapman and Kaelbling, 1991) D. Chapman and L. P. Kaelbling. Learning from Delayed
Reinforcement In a Complex Domain. Technical Report, Teleos Research, 1991.

718 Moore

[Dayan and Hinton, 1993] P. Dayan and G. E. Hinton. Feudal Reinforcement Learning.
In S. J. Hanson, J. D Cowan, and C. L. Giles, editors, Advances in Neural Information
Processing Systems 5. Morgan Kaufmann, 1993.

[Friedman et al., 1977) J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for
Finding Best Matches in Logarithmic Expected Time. ACM Trans. on Mathematical
Software, 3(3):209-226, September 1977.

[Moore and Atkeson, 1993] A. W. Moore and C. G. Atkeson. Prioritized Sweeping: Rein
forcement Learning with Less Data and Less Real Time. Machine Learning, 13, 1993.

[Moore, 1991] A. W. Moore. Variable Resolution Dynamic Programming: Efficiently
Learning Action Maps in Multivariate Real-valued State-spaces . In L. Birnbaum and
G. Collins, editors, Machine Learning: Proceedings of the Eighth International Work
shop. Morgan Kaufman, June 1991.

[Samuel, 1959] A. L. Samuel. Some Studies in Machine Learning using the Game of Check
ers. IBM Journal on Research and Development, 3, 1959. Reprinted in E. A. Feigenbaum
and J. Feldman, editors, Computers and Thought, McGraw-Hill, 1963.

[Simons et al., 1982) J. Simons, H. Van Brussel, J. De Schutter, and J. Verhaert. A Self
Learning Automaton with Variable Resolution for High Precision Assembly by Industrial
Robots. IEEE Trans. on Automatic Control, 27(5):1109-1113, October 1982.

[Singh, 1993] S. Singh. Personal Communication. ,1993.

[Sutton, 1984) R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning.
Phd. thesis, University of Massachusetts, Amherst, 1984.

[Watkins, 1989] C. J. C. H. Watkins . Learning from Delayed Rewards. PhD. Thesis,
King's College, University of Cambridge, May 1989.

