Supervised Learning with Growing Cell
Structures

Bernd Fritzke
Institut fir Neuroinformatik
Ruhr-Universitat Bochum
Germany

Abstract

We present a new incremental radial basis function network suit-
able for classification and regression problems. Center positions
are continuously updated through soft competitive learning. The
width of the radial basis functions is derived from the distance
to topological neighbors. During the training the observed error
i1s accumulated locally and used to determine where to insert the
next unit. This leads (in case of classification problems) to the
placement of units near class borders rather than near frequency
peaks as is done by most existing methods. The resulting networks
need few training epochs and seem to generalize very well. This is
demonstrated by examples.

1 INTRODUCTION

Feed-forward networks of localized (e.g., Gaussian) units are an interesting alter-
native to the more frequently used networks of global (e.g., sigmoidal) units. It
has been shown that with localized units one hidden layer suffices in principle to
approximate any continuous function, whereas with sigmoidal units two layers are
necessary.

In the following we are considering radial basis function networks similar to those
proposed by Moody & Darken (1989) or Poggio & Girosi (1990). Such networks
consist of one layer L of Gaussian units. Each unit ¢ € L has an associated vector
w. € R™ indicating the position of the Gaussian in input vector space and a standard

255



256

Fritzke

deviation .. For a given input datum £ € R" the activation of unit ¢ is described

by
D.(6) = exp (- L=l )

o?

On top of the layer L of Gaussian units there are m single layer percepirons.
Thereby, m is the output dimensionality of the problem which is given by a number
of input/output pairs' (£,{) € (R"® x R™). Each of the single layer perceptrons
computes a weighted sum of the activations in L:

0i() =Y _wiD;(€) ie{l,..., m) (2)

jeL

With w;; we denote the weighted connection from local unit j to output unit i.
Training of a single layer perceptron to minimize square error is a very well under-
stood problem which can be solved incrementally by the delta rule or directly by
linear algebra techniques (Moore-Penrose inverse). Therefore, the only (but severe)
difficulty when using radial basis function networks is choosing the number of local
units and their respective parameters, namely center position w and width o.

One extreme approach is to use one unit per data points and to position the units
directly at the data points. If one chooses the width of the Gaussians sufficiently
small it is possible to construct a network which correctly classifies the training
data, no matter how complicated the task is (Fritzke, 1994). However, the network
size is very large and might even be infinite in the case of a continuous stream of
non-repeating stochastic input data. Moreover, such a network can be expected to
generalize poorly.

Moody & Darken (1989), in contrast, propose to use a fixed number of local units
(which is usually considerably smaller than the total number of data points). These
units are first distributed by an unsupervised clustering method (e.g., k-means).
Thereafter, the weights to the output units are determined by gradient descent.
Although good results are reported for this method it is rather easy to come up
with examples where it would not perform well: k-means positions the units based
on the density of the training data, specifically near density peaks. However, to ap-
proximate the optimal Bayesian a posteriori classifier it would be better to position
units near class borders. Class borders, however, often lie in regions with a particu-
larly low data density. Therefore, all methods based on k-means-like unsupervised
placement of the Gaussians are in danger to perform poorly with a fixed number of
units or — similarly undesirable — to need a huge number of units to achieve decent
performance.

From this one can conclude that — in the case of radial basis function networks
— it 1s essential to use the class labels not only for the training of the connection
weights but also for the placement of the local units. Doing this forms the core of
the method proposed below.

!Throughout this article we assume a classification problem and use the corresponding
terminology. However, the described method is suitable for regression problems as well.



Supervised Learning with Growing Cell Structures

2 SUPERVISED GROWING CELL STRUCTURES

In the following we present an incremental radial basis function network which
is able to simultaneously determine a suitable number of local units, their center
positions and widths as well as the connection weights to the output units. The
basic idea is a very simple one:

0. Start with a very small radial basis function network.
1. Train the current network with some I/O-pairs from the training data.

2. Use the observed accumulated error to determine where in input vector
space to insert new units.

3. If network does not perform well enough goto 1.

One should note that during the training phase (Step 1.) error is accumulated
over several data items and this accumulated error is used to determine where to
insert new units (Step 2.). This is different from the approach of Platt (1991) where
insertions are based on single poorly mapped patterns. In both cases, however, the
goal is to position new units in regions where the current network does not perform
well rather than in regions where many data items stem from.

In our model the center positions of new units are interpolated from the positions
of existing units. Specifically, after some adaptation steps we determine the unit
¢ which has accumulated the maximum error and insert a new unit in between ¢
and one of its neighbors in input vector space. The interpolation procedure makes
it necessary to allow the center positions of existing units to change. Otherwise, all
new units would be restricted to the convex hull of the centers of the initial network.

We do not necessarily insert a new unit in between ¢ and its nearest neighbor.
Rather we like to choose one of the units with adjacent Vorono: regions®. In the
two-dimensional case these are the direct neighbors of ¢ in the Delaunay triangu-
lation (Delaunay-neighbors) induced by all center positions. In higher-dimensional
spaces there exists an equivalent based on hypertetrahedrons which, however, is
very hard to compute. For this reason, we arrange our units in a certain topological
structure (see below) which has the property that if two units are direct neighbors
in that structure they are mostly Delaunay-neighbors. By this we get with very
little computational effort an approximate subset of the Delaunay-neighbors which
seems to be sufficient for practical purposes.

2.1 NETWORK STRUCTURE

The structure of our network is very similar to standard radial basis function net-
works. The only difference is that we arrange the local units in a k-dimensional
topological structure consisting of connected simplices® (lines for k£ = 1, triangles

2The Voronoi region of a unit ¢ denotes the part of the input vector space which consists
of points for which ¢ is the nearest unit.

% A historical reason for this specific approach is the fact that the model was developed
from an unsupervised network (see Fritzke, 1993) where the k-dimensional neighborhood
was needed to reduce dimensionality. We currently investigate an alternative (and more

257



258

Fritzke

for k = 2, tetrahedrons for ¥ = 3 and hypertetrahedrons for larger k). This ar-
rangement is done to facilitate the interpolation and adaptation steps described
below. The initial network consists of one k-dimensional simplex (k + 1 local units
fully connected with each other). The neighborhood connections are not weighted
and do not directly influence the behavior of the network. They are, however, used
to determine the width of the Gaussian functions associated with the units. Let
for each Gaussian unit ¢ denote N, the set of direct topological neighbors in the
topological structure. Then the width of ¢ is defined as

oe = (1/INel) Y Ilwe — wall2 (3)
deN,

which is the mean distance to the topological neighbors. If topological neighbors
have similar center positions (which will be ensured by the way adaptation and
insertion is done) then this leads to a covering of the input vector space with partially
overlapping Gaussian functions.

2.2 ADAPTATION

It was mentioned above that several adaptation steps are done before a new unit is
inserted. One single adaptation step is done as follows (see fig. 1):

e Chose an I/O-pair (£,(),€ € R*,{ € R™) from the training data.
e determine the unit s closest to £ (the so-called best-matching unit).
e Move the centers of s and its direct topological neighbors towards &.
Aw, = ep(€ — wy), Aw, = en(é — w.) for allc € N,
€y and ¢, are small constants with g, >> ¢,.
o Compute for each local unit ¢ € L the activation D.(§) (see eqn. 1)

e Compute for each output unit ¢ the activation O; (see eqn. 2)

e Compute the square error by
SE=) (¢ —0:)
i=1

e Accumulate error at best-matching unit s:
Aerr, = SE
e Make Delta-rule step for the weights (o denotes the learning rate):
Aw;j =aDj(G—0;) i€{l,...,m},j€L

Since together with the best-matching unit always its direct topological neighbors
are adapted, neighboring units tend to have similar center positions. This prop-
erty can be used to determine suitable center positions for new units as will be
demonstrated in the following.



Supervised Learning with Growing Cell Structures

a) Before ... b) during, and ... c) ... after adaptation
Figure 1: One adaptation step. The center positions of the current network are
shown and the change caused by a single input signal. The observed error SE for

this pattern is added to the local error variable of the best-matching unit.

b) ... and after insertion

a) Before ...

Figure 2: Insertion of a new unit. The dotted lines indicate the Voronoi fields.
The unit ¢ has accumulated the most error and, therefore, a new unit is inserted
between ¢ and one of its direct neighbors.

2.3 INSERTION OF NEW UNITS

After a constant number A of adaptation steps a new unit is inserted. For this
purpose the unit ¢ with maximum accumulated error is determined. Obviously,
¢ lies in a region of the input vector space where many misclassifications occur.
One possible reason for this is that the gradient descent procedure is unable to find
suitable weights for the current network. This again might be caused by the coarse
resolution at this region of the input vector space: if data items from different
classes are covered by the same local unit and activate this unit to about the same
degree then it might be the case that their vectors of local unit activations are
nearly identical which makes it hard for the following single layer perceptrons to
distinguish among them. Moreover, even if the activation vectors are sufficiently
different they still might be not linearly separable.

accurate) approximation of the Delaunay triangulation which is based on the “Neural-Gas”
method proposed by Martinetz & Schulten (1991).

259












