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Abstract 

A simple model of coupled dynamics of fast neurons and slow inter
actions, modelling self-organization in recurrent neural networks, 
leads naturally to an effective statistical mechanics characterized 
by a partition function which is an average over a replicated system. 
This is reminiscent of the replica trick used to study spin-glasses, 
but with the difference that the number of replicas has a physi
cal meaning as the ratio of two temperatures and can be varied 
throughout the whole range of real values. The model has inter
esting phase consequences as a function of varying this ratio and 
external stimuli, and can be extended to a range of other models. 

1 A SIMPLE MODEL WITH FAST DYNAMIC 
NEURONS AND SLOW DYNAMIC INTERACTIONS 

As the basic archetypal model we consider a system of Ising spin neurons (J'i E 
{-I, I}, i E {I, ... , N}, interacting via continuous-valued symmetric interactions, 
Iij, which themselves evolve in response to the states of the neurons. The neurons 
are taken to have a stochastic field-alignment dynamics which is fast compared with 
the evolution rate of the interactions hj, such that on the time-scale of Iii-dynamics 
the neurons are effectively in equilibrium according to a Boltzmann distribution, 

(1) 
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where 
HVoj} ({O"d) = - L JijO"iO"j (2) 

i<j 
and the subscript {Jij} indicates that the {Jij} are to be considered as quenched 
variables. In practice, several specific types of dynamics which obey detailed balance 
lead to the equilibrium distribution (1), such as a Markov process with single-spin 
flip Glauber dynamics [1]. The quantity /3 is an inverse temperature characterizing 
the stochastic gain. 

For the hj dynamics we choose the form 

d 1 1 
T' dthj = N(O"iO"j)V,i} - jjJij + viirJij(t) (i < j) (3) 

where ( .. ')ViJ} refers to a thermodynamic average over the distribution (1) with 
the effectively instantaneous {Jij}, and TJij (t) is a stochastic Gaussian white noise 
of zero mean and correlation 

(TJij(t)TJkl(t')) = 2T'ffi- 1o(ij),(kl)O(t - t') 
The first term on the right-hand side of (3) is inspired by the Hebbian process in 
neural tissue in which synaptic efficacies are believed to grow locally in response to 
the simultaneous activity of pre- an~ post-synaptic neurons [2]. The second term 
acts to limit the magnitude of hj; f3 is the characteristic inverse temperature of 
the interaction system. (A related interaction dynamics without the noise term, 
equivalent to ffi = 00, was introduced by Shinomoto [3]; the anti-Hebbian version of 
the above coupled dynamics was studied in layered systems by Jonker et al. [4, 5].) 

Substituting for (O"iO"j) in terms of the distribution (1) enables us to re-write (3) as 

d a 
NT' dthj = - aJij 11. ({Jij}) + VNTJij(t) (4) 

where the effective Hamiltonian 11. ({ hj}) is given by 

1 1 ~ 2 
11. ( { Jij }) = - /3 In Z {3 ( { Jij } ) + 2 jjN ~<. Jij 

l J 

(5) 

where Z{3 ({ hj}) is the partition function associated with (2): 

2 COUPLED SYSTEM IN THERMAL EQUILIBRIUM 

We now recognise (4) as having the form of a Langevin equation, so that the equilib
rium distribution of the interaction system is given by a Boltzmann form. Hence
forth, we concentrate on this equilibrium state which we can characterize by a 
partition function Z t3 an d an associated 'free energy' F t3: 

Z {3 = J P dJij [Z{3 ({ Jij}) r exp [- ~ ffijjN ~ Ji~] 
S<J S<J 

- --1-
F{3 = -f3 In Z{3 (6) 
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where n _ ~/j3. We may use Z~ as a generating functional to produce thermody
namic averages of state variables <I> ( {O"d; {Jij}) in the combined system by adding 
suitable infinitesimal source terms to the neuron Hamiltonian (2): 

HP.j}({O"d) -+ Hp.j} ({O"d) + A<p({ud;{Jij}) 

op-
lim £:J: = (<p({O"d;{Jij})){J } A-+O UA 'J 

_ IfL<j dhj (<p({O"d; {Jij}))plj}e-~1l(Plj}) 

IfL<jdhj e-~1l({J·j}) 

where the bar refers to an average over the asymptotic {hj} dynamics. 

(7) 

The form (6) with n -+ 0 is immediately reminiscent of the effective partition 
function which results from the application of the replica trick to replace In Z by 
limn-+o ~(zn - 1) in dealing with a quenched average for the infinite-ranged spin
glass [6], while n = 1 relates to the corresponding annealed average, although we 
note that in the present model the time-scales for neuron and interaction dynamics 
remain completely disparate. These observations correlate with the identification 
of n with fi / j3, which implies that n -+ 0 corresponds to a situation in which the 
interaction dynamics is dominated by the stochastic term T)ij (t), rather than by the 
behaviour of the neurons, while for n = 1 the two characteristic temperatures are 
the same. For n -+ 00 the influence of the neurons on the interaction dynamics 
dominates. In fact, any real n is possible by tuning the ratio between the two {3's. 
In the formulation presented in this paper n is always non-negative, but negative 
values are possible if the Hebbian rule of (3) is replaced by an anti-Hebbian form 
with (UiO"j) replaced by - (O"iO"j) (the case of negative n is being studied by Mezard 
and co-workers [7]). 

The model discussed above is range-free/infinite-ranged and can therefore be an
alyzed in the thermodynamic limit N -+ 00 by the replica mean-field theory as 
devised for the Sherrington-Kirkpatrick spin-glass [6, 8, 9]. This can be developed 
precisely for integer n [6, 8, 9, 10] and analytically continued. In the usual manner 
there enters a spin-glass order parameter 

(, f- b) 

where the superscripts are replica labels. q"{6 is given by the extremum of 

F({q1'6})=_LL:[q1'O]2+ ln Tr exp [ ~ L:O"1'q1'OO"O] 
2J-ln2 1'<6 {O"1'} J-ln2 1'<6 

while Z~ is proportional to exp [NextrF ({q1'6})]. In the replica-symmetric region 
(or ansatz) one assumes q1'O = q. 

We will first choose as the independent variables nand j3 and briefly discuss the 
phase picture of our model (full details can be found in [11]). The system exhibits 
a transition from a paramagnetic state (q = 0) to an ordered state (q > 0) at a 
critical j3c(n). For n ::; 2 this transition is second order at j3c = 1, down to the SK 
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spin-glass limit, n - 0, but for n > 2 the coupled dynamics leads to a qualitative, 
as well as quantitative, change to first order. Replica symmetry is stable above a 
critical value nc(!3), at which there is a de Almeida-Thouless (AT) transition (c.f. 
Kondor [12]). As expected from spin-glass studies, n c(f3) goes to zero as {3 ! 1 
but rises for larger /3, having a maximum of order 0.3 at {3 of order 2. Thus, for 
n > nc(max) ::::: 0.3 there is no instability against small replica-symmetry breaking 
fluctuations, while for smaller n there is re-entrance in this stability. The transition 
from a paramagnetic to an ordered state and the onset of local RS instability for 
various temperatures is shown in Figure 1. 

3 EXTERNAL FIELDS 

Several simple modifications of the above model are possible. One consists of adding 
external fields to the spin dynamics and/or to the interaction dynamics, by making 
the substitutions 

HV,j} ({O"d) ~ HV'J} ({O"d) - LOiO"i 
i 

1£ ( {Jii }) ~ 1£ ( {Jij }) - L hi Kij 
i<i 

in (2) and (5) respectively. These external fields may be viewed as generating fields 
in the sense of (7); for example 

For neural network models a natural first choice for the external fields would be 
Oi = hei and Kij = Keiej, ei E {-I, I}, where the ei are quenched random vari
ables corresponding to an imposed pattern. Without loss of generality all the ei 
can be taken as +1, via the gauge transformation O"i ~ O"iei, Jii ~ Jiieiei. Hence
forth we shall make this choice. The neuron perturbation field h induces a finite 
'magnetization' characterized by a new order parameter 

m a = (O"f) 

which is independent of Q: in the replica-symmetric assumption (which turns out 
to be stable with respect to variation in this parameter). As in the case of the 
spin-glass, there is now a critical surface in (h, n, {3) space characterizing the onset 
of replica symmetry breaking. In introducing the interaction perturbation field K 
we find that K/ J-l is the analogue of the mean exchange Jo in the SK spin-glass 
model, ]2 = ({3nJ-l )-1 being the analogue of the variance. If large enough, this field 
leads to a spontaneous 'ferromagnetic' order. 

Again we find further examples of both second and first order transitions (details 
can be found in [11]). For the paramagnetic (P; m = 0, q = 0) to ferromagnetic 
(F; m I=- 0, q I=- 0) case, the transition is second order at the SK value f3Ja = 1 so 
long as ({3])-2 ~ 3n - 2. Only when ({3])-2 < 3n - 2 do the interaction dynamics 



Coupled Dynamics of Fast Neurons and Slow Interactions 451 

1.2 

ll--_P_A_RAM __ A_GN_ET _____ -.-.-------.. ~ .• -·,...· 

0.8 

T 
0.6 

0.2 

1 

WA'M'IS GLASS 

SPIN GLASS 

2 3 
n 

Figure 1: Phasediagrarn for j = 1. Dotted line: first order transition, solid line: 
second order transition. The separation between Mattis-glass and spin-glass phase 
is defined by the de Almeida-Thouless instability 
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influence the transition, changing it to first order at a lower temperature. Regarding 
the ferromagnetic to spin-glass (SGj m = 0, q "# 0) transition, this exhibits both 
second order (lower .70) and first order (higher Jo) sections separated by a tricritical 
point for n less than a critical value of the order of 3.3. This tricritical point exhibits 
re-entrance as a function of n. 

4 COMPARISON BETWEEN COUPLED DYNAMICS 
AND SK MODEL 

In order to clarify the differences, we will briefly summarize the two routes that 
lead to an SK-type replica theory: 

Coupled Dynamics: 

Fast Ising spin neurons + slow dynamic interactions, 

Free energy: 

Define: 

Thermodynamics: 

d 1 K 
-J .. = -((J'(J'){J .} + - - IIJ .. + GWN dt lJ N I J 'J N r lJ 

- 1 -f - --_-logZ, 
f3N 

z = fIT dhj e-1ht({J,j}) 

i<j 

io = K/ /-t, 

N-+oo: 
- 1 D f = - f3n extr G ({q'Y }; {m'Y}) + const. 

SK spin-glass: 

Ising spins + fixed random interactions, 

P(Jij) = [27rJ2]-~e-~[J;j-Jo]2/J2 
Free energy: 

f 1 1. l[n ] =--logZ=--hm- Z -1 
f3N f3N n-O n 

Selt-averaging: 

Physical scaling: 
Jo = Jo/N, J = J/Vii 

Thermodynamics: 

f = - lim 131 extr G ({q'YD}j {m'Y}) + const. 
n_O n 
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5 DISCUSSION 

\Ve have obtained a solvable model with which a coupled dynamics of fast stochas
tic neurons and slow dynamic interactions can be studied analytically. Furthermore 
it presents the replica method from a novel perspective, provides a direct inter
pretation of the replica dimension n in terms of parameters controlling dynamical 
processes and leads to new phase transition characters. As a model for neural learn
ing the specific example analyzed here is however only a first step, with hand K 
as introduced corresponding to only a single pattern. Its adaptation to treat many 
patterns is the next challenge. 

One type of generalization is to consider the whole system as of lower connectivity 
with only pairs of connected sites being available for interaction upgrade. For 
example, the system could be on a lattice, in which case the corresponding coupled 
partition function will have the usual greater complication of a finite-dimensional 
system, or randomly connected with each bond present with a probability C IN, 
in which case there results an analogue of the Viana-Bray [13] spin-glass. In each 
of these cases the explicit factors involving N in the {hj} dynamics (3) should 
be removed (their presence or absence being determined by the need for statistical 
relevance and physical scaling). 

Yet another generalization is to higher order interactions, for example to p-neuron 
ones: 

Hp} ({O"d) = - L Ji l , ... ,i 1' O"i 1 0"i 2 •• . 00i 1' 

i l, · . . ,i l' 

with corresponding interaction dynamics 

d 1 1 
r-J· . - -(0"' 0"' ){J} - IIJ· . + -T)' . (t) dt 11 ," .t 1' - N Sl'" 11' r tl , .. ·,l1' ffi Sl,· .. ,l1' 

or to more complex neuron types. 

If the symmetry-breaking fields Kij in the interaction dynamics are choosen at 
random, we obtain a curious theory in which we find replicas on top of replicas (the 
replica trick would be used to deal with the quenched disorder of the K ij , for a 
model in which replicas are already present. due to the coupled dynamics). 

Finally, our approach can in fact be generalized to any statistical mechanical system 
which in equilibrium is described by a Boltzmann distribution in which the Hamilto
nian has (adiabatically slowly) evolving parameters. By choosing these parameters 
to evolve according to an appropriate Langevin process (involving the free energy 
of the underlying faRt system) one always arrives at a replica theory describing the 
coupled system in equilibrium. 
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